Skip to main content

The Role of the Lectin Calnexin in Conformation Independent Binding to N-Linked Glycoproteins and Quality Control

  • Chapter
Glycoimmunology 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 435))

Abstract

It has often been speculated that one of the selective forces for the evolution of Nlinked glycosylation is that of productive protein folding. Strong experimental support has now been put forward as a consequence of studies with the endoplasmic reticulum resident membrane protein calnexin and its luminal homologue calreticulin. These resident proteins, at least one of which (calnexin) is universal to all eukaryotes, act principally as lectins which recognize monoglucosylated intermediates of high mannose containing N-linked glycoproteins. A molecular chaperone apparatus consisting of the coupled actions of uridine diphosphate glucose: glycoprotein glucosyl transferase, calnexin/calreticulin and glucosidase II has been reconstituted using fully defined constituents in vitro. That this apparatus also functions as one of the regulatory mechanisms in the identification and triaging of misfolded glycoproteins (quality control) has also shown recent experimental support. From the perspective of calnexin N-linked glycosylation and more specifically monoglucosylation allows the temporal coupling of glycoprotein folding within the spatial confines of the endoplasmic reticulum and provides a mechanism to direct misfolded glycoproteins away from productive folding intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia, N., Bergeron, U.M., Wada, I., Degen, E., and Williams, D.B. 1992. The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J. Biol Chem. 267:10914–10918.

    PubMed  CAS  Google Scholar 

  • Baass, P.C., DiGuglielmo, G.M., Authier, F., Posner, B.I., and Bergeron, J.J.M. 1995. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5:465–470.

    Article  PubMed  CAS  Google Scholar 

  • Burns, K., Atkinson, E.A., Bleackley, R.C., and Michalak, M. 1994. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 4:152–154.

    Article  PubMed  CAS  Google Scholar 

  • Capps, G.G., and Zuniga, M.C. 1994. Class I histocompatibility molecule association with phosphorylated calnexin. J. Biol. Chem. 269:11634–11639.

    PubMed  CAS  Google Scholar 

  • Chen, W., Helenius, J., Braakman, I., Helenius, A. 1995. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA. 92:6229–6233.

    Article  PubMed  CAS  Google Scholar 

  • Dedhar, S. 1994. Novel functions for calreticulin: interaction with integrals and modulation of gene expression? Trends Biochem. Sci. 19:269–271.

    Article  PubMed  CAS  Google Scholar 

  • Degen, E., and Williams, D.B. 1991. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J. Cell Biol. 112:1099–1115.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, K., Veit, M., Stamnes, M.A., and Rothman, J.E. 1996. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science. 273:1396–1399.

    Article  PubMed  CAS  Google Scholar 

  • Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B. and Rapoport, T.A. 1990. The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents. J. Cell Biol. 111:2283–2294.

    Article  PubMed  Google Scholar 

  • Hammond, C., Braakman, I., and Helenius, A. 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA. 91:913–917.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C., and Helenius, A. 1993. A chaperone with a sweet tooth. Current Biology. 3:884–886.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, D.N., Foellmer, B., and Helenius, A. 1995. Glucose trimming and reglueosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 81:425–433.

    Article  PubMed  CAS  Google Scholar 

  • Hochstenbach, F., David, V., Watkins, S., Brenner, M.B. 1992. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T-and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc. Natl. Acad. Sci. USA. 89:4734–4738.

    Article  PubMed  CAS  Google Scholar 

  • Hurtley, S.M., and Helenius, A. 1989. Protein oligomerizaton in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5:277–307.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M.R., Nilsson, T., and Peterson, P.A. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9:3153–3162.

    PubMed  CAS  Google Scholar 

  • Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., and Riordan, J.R. 1995. Multiple proteolytic systems including the proteasome, contribute to CFTR processing. Cell. 83:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Kay, D.G., Lai, W.H., Uchihashi, M., Khan, M.N., Posner, B.I., and Bergeron, J.J.M. 1986. Epidermal growth factor receptor kinase translocation and activation in vivo. J. Biol Chem. 261:8473–8480.

    PubMed  CAS  Google Scholar 

  • Kearse, K.P., Williams, D.B., and Singer, A. 1994. Persistence of glucose residues on core oligosaccharides prevents association of TCR α and TCRβ proteins with calnexin and results specifically in accelerated degradation of nascent TCR α proteins within the endoplasmic reticulum. EMBO J. 13:3678–3686.

    PubMed  CAS  Google Scholar 

  • Khan, M.N., Savoie, S., Bergeron, J.J.M. and Posner, B.I. 1986. Characterization of rat liver endosomal fractions: In vivo activation of insulin-stimulable receptor kinase in these structures. J. Biol. Chem. 261:8462–8472.

    PubMed  CAS  Google Scholar 

  • Le, A., Steiner, J.L., Ferrell, G.A., Shaker, J.C. and Sifers, R.N. 1994. Association between calnexin and a secretion-incompetent variant of human α1-antitrypsin. J. Biol. Chem. 269:7514–7519.

    PubMed  CAS  Google Scholar 

  • Li, Y., Bergeron, J.J.M., Luo, L., Ou, W-J., Thomas, D.Y., and Kang, C.Y. 1996. Effects of inefficient cleavage of the signal sequence of HIV-1 gp120 on its association with calnexin, folding, and intracellular transport. Proc. Natl. Acad. Sci. USA. 93:9606–9611.

    Article  PubMed  CAS  Google Scholar 

  • Lodish, H.F. 1988. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi: A rate-limiting step in protein maturation and secretion. J. Biol. Chem. 263:2107–2110.

    PubMed  CAS  Google Scholar 

  • Lodish, H.F., and Kong, N. 1984. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 98:1720–1729.

    Article  PubMed  CAS  Google Scholar 

  • McCracken, A.A., and Brodsky, J.L. 1996. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Michalak, M., Milner, R.E., Burns, K., Opas, M. 1992. Calreticulin. Biochemical J. 285:681–692.

    CAS  Google Scholar 

  • Migliaccio, G., Nicchitta, C.V., and Blobel, G. 1992. The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation. J. Cell Biol. 117:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Ora, A., and Helenius, A. 1995. Calnexin fails to associate with substrate proteins in glucosidase-deficient cell lines. J. Biol. Chem. 270:26060–26062.

    Article  PubMed  CAS  Google Scholar 

  • Ou, W-J., Thomas, D.Y., Bell, A.W., and Bergeron, J.J.M. 1992. Casein kinase II phosphorylation of signal sequence receptor α and the associated membrane chaperone calnexin. J. Biol-Chem. 267:23789–23796.

    PubMed  CAS  Google Scholar 

  • Ou, W-J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J.M. 1993. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 364:771–776.

    Article  PubMed  CAS  Google Scholar 

  • Parlati, F., Dominguez, M., Bergeron, J.J.M., and Thomas, D.Y. 1995a. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270:244–253.

    Article  PubMed  CAS  Google Scholar 

  • Parlati, F., Dignard, D., Bergeron, J.J.M., and Thomas, D.Y. 1995b. The calnexin homologue cnxl+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBQ J. 14:3064–3072.

    CAS  Google Scholar 

  • Parodi, A.J., Mendelzon, D.H., Lederkremer, G.Z., and Martin-Barrientos, J. 1984. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2 occurs in rat liver and phaseolus vulgaris cells. J. Biol, Chem. 259:6351–6357.

    CAS  Google Scholar 

  • Pind, S., Riordan, J.R., and Williams, D.B. 1994. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:12784–12788.

    PubMed  CAS  Google Scholar 

  • Prehn, S., Herz, J., Hartmann, E., Kurzchalia, T.V., Frank, R., Roemisch, K., Dobberstein, B., and Rapoport, T.A. 1990. Structure and biosynthesis of the signal-sequence receptor. Eur. J. Biochem. 188:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Qu, D., Teckman, J.H., Omura, S., and Perlmutters, D.H. 1996. Degradation of a mutant secretory protein, α1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271:22791–22795.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, J.E., and Wieland, F.T. 1996. Protein sorting by transport vesicles. Science. 272:227–234.

    Article  PubMed  CAS  Google Scholar 

  • Rindress, D., Lei, X., Ahluwalia, J.P.S., Cameron, P.H., Fazel, A., Posner, B.I., and Bergeron, J.J.M. 1993. Organelle specific phosphorylation: Identification of unique membrane phosphoproteins of the endoplasmic reticulum and endosomal apparatus. J. Biol Chem. 268:5139–5147.

    PubMed  CAS  Google Scholar 

  • Schimmoller, F., Singer-Kruger, B., Schroder, S., Kruger, U., Barlowe, C., and Riezman, H. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBQ J. 14:1329–1339.

    CAS  Google Scholar 

  • Yeo, K.T., Yeo, T.K., and Olden, K. 1989. Bromoconduritol treatment delays intracellular transport of secretory glycoproteins in human hepatoma cell cultures. Biochem. Biophys. Res. Comm. 161:1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Wada, I., Rindress, D., Cameron, P.H., Ou, W-J., Doherty, II, J-J. Louvard, D., Bell, A.W., Dignard, D., Thomas, D.Y., and Bergeron, J.J.M. 1991. SSR α and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266:19599–19610.

    PubMed  CAS  Google Scholar 

  • Wada, I., Lai, W.H., Posner, B.I., and Bergeron, J.J.M. 1992. Asociation of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes. J. Cell Biol. 116:321–330.

    Article  PubMed  CAS  Google Scholar 

  • Ward, C.L., Omura, S., and Kopito, R.R. 1995. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A., and Williams, D.B. 1995. The molecular chaperone calnexin binds GlclMan9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270:4697–4704.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D.B., Swiedler, S.J., and Hart, G.W. 1985. Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 101:725–734.

    Article  PubMed  CAS  Google Scholar 

  • Zapun, A., Petrescu, S.M., Rudd, P.M., Dwek, R.A., Thomas, D.Y., and Bergeron, J.J.M. 1996. Conformation independent binding of monoglucosylated ribonuclease B to calnexin. Cell (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergeron, J.J.M. et al. (1998). The Role of the Lectin Calnexin in Conformation Independent Binding to N-Linked Glycoproteins and Quality Control. In: Axford, J.S. (eds) Glycoimmunology 2. Advances in Experimental Medicine and Biology, vol 435. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5383-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5383-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7457-2

  • Online ISBN: 978-1-4615-5383-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics