Skip to main content

Effect of FMLP Stimulation on [3H]-NECA Binding to Adenosine Receptors in Neutrophils Membranes

  • Chapter
Purine and Pyrimidine Metabolism in Man IX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 431))

  • 29 Accesses

Abstract

At physiological concentrations, adenosine can modulate a variety of biological activities by engaging specific surface receptors, termed A1 and A2, with different affinity for adenosine and its analogues.1 Engagement of A2 adenosine receptors induces an increase in cAMP level in several cells types, in contrast stimulation of A1 receptors causes an opposite effect.2 In neutrophils, adenosine and its analogues inhibit O2 generation, phagocytosis and adherence by occupancy of specific A2 adenosine receptors, while occupancy of A1 adenosine receptors enhance chemotaxis, phagocytosis and adherence.3,7 In general, activation of leukocytes adenosine receptors reduces immune and inflammatory responses.8 Therefore, it may be suggested that release of adenosine is one mechanism by which normal cells protect themselves from activated neutrophils. In fact, while stimulated neutrophils normally control bacterial infection, they may also contribute to the pathology of several inflammatory diseases including some rheumatoid diseases and emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daval J.L., Nehlig A. and Nicolas F. 1991. Physiological and pharmacological properties of adenosine:therapeutic implications. Life Science. 49: 1435.

    Article  CAS  Google Scholar 

  2. Van Calker D.M., Muller M. and Hamprecht B. 1979. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33: 999.

    Article  PubMed  Google Scholar 

  3. Robets P.A., Newby A.C., Hallet M.B. and Campbell A.K. 1985 Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem. J. 277: 669.

    Google Scholar 

  4. Cronstein B.N., Levin R.I., Belanoff J., Weissmann G. and Hirschhorn R. 1986. Adenosine:an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J. Clin. Invest. 78: 760.

    Article  PubMed  CAS  Google Scholar 

  5. Cronstein B.N., Kramer S.B., Weissmann G. and Hirschhorn R. 1983. Adenosine:a physiological modulator of Superoxide anion generation by human neutrophils. J. Exp. Med. 158: 1160.

    Article  PubMed  CAS  Google Scholar 

  6. Marone G., Thomas L. and Lichtenstein L. 1980. The role of agonist that activate adenylate cyclase in the control of cAMP metabolism and enzyme release by human polymorphonuclear leukocytes. J. Immunol. 125: 2277.

    PubMed  CAS  Google Scholar 

  7. Cronstein B.N., Rosenstein E.D., Kramer S.B. Weissmann G. and Hirschhorn R. 1985. Adenosine: a physiologic modulator of Superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J. Immunol. 135: 1366.

    PubMed  CAS  Google Scholar 

  8. Cronstein B.N. 1994. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76(1): 5.

    PubMed  CAS  Google Scholar 

  9. Verghese M.W., Smith CD., Snyderman R. 1985. Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes. Biochem. Biophys. Res. Commun. 127: 450.

    Article  PubMed  CAS  Google Scholar 

  10. Cronstein B.N., Kramer S.B., Rosenstein E.D., Korchak H.M., Weissmann G. and Hirschhorn R. 1988. Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Biochem. J. 252: 709.

    PubMed  CAS  Google Scholar 

  11. Cockcroft S. and Stutchfield J. 1989. The receptors for ATP and fMetLeuPhe are independently coupled to phospholipases C and A2 via G-protein(s). Biochem. J. 263: 715.

    PubMed  CAS  Google Scholar 

  12. Cronstein B.N. and Haines K.A. 1992. Stimulus-response uncoupling in the neutrophil. Biochem. J. 281: 631.

    PubMed  CAS  Google Scholar 

  13. Cronstein B.N., Hains K.A., Kolasinski S.L. and Reibman J.1992. Occupancy of G alpha s-linked receptors uncouples chemoattractant receptors from their stimulus-trasduction mechanisms in the neutrophil. Blood 80: 1052.

    PubMed  CAS  Google Scholar 

  14. Boyum A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by cenrifugation and sedimentation at 1 x g. Scand. J. Clin. Lab. Invest. 21: 77.

    Article  CAS  Google Scholar 

  15. Martini C., Di Sacco S., Tacchi P., Bazzichi L., Soletti A., Bondi F., Ciompi M.L., and Lucacchini A. 1991. A2 adenosine receptors in neutrophils from healthy volunteers and patients with rheumatic disease. Purine and Pyrimidine Metabolism in Man VI part A, Plenum Press, New York, 459.

    Google Scholar 

  16. McPherson G.A. Kinetic, EBDA, Ligand Lowry. A collection or radioligand binding analysis programs. Elsevier. Cambridge

    Google Scholar 

  17. Zolnierowicz S., Work C. Hutchison and Fox I.H. 1990. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein. Mol. Pharmacol. 37: 554.

    PubMed  CAS  Google Scholar 

  18. Sandborg R.R and Smolen J.E. 1988. Biology of disease:early biochemical events in leukocyte activation. Laboratory Investigation 59(3): 300.

    PubMed  CAS  Google Scholar 

  19. Hutchison K.A. and Fox I.H. 1989. Purification and characterization of the adenosine A2-like binding site from human placental membranes. J. Biol. Chem. 264: 19898.

    PubMed  CAS  Google Scholar 

  20. Hutchison K.A., Nevins B., Perini F. and Fox I.H. 1990. Soluble and membrane associated human low-affinity adenosine binding protein (adenotin):properties and homology with mammalian and avian stress proteins. Biochemistry 29: 5138.

    Article  PubMed  CAS  Google Scholar 

  21. Gavish M., Goodman R.R. and Snyder S.H. 1982. Solubilized adenosine receptors in the brain:regulation by guanine nucleotides. Science 215: 1633.

    Article  PubMed  CAS  Google Scholar 

  22. Stiles G. 1985. The A1 adenosine receptor. Solubilization and characterization of a guanine nucleotide-sensitive form of the receptor. J. Biol. Chem. 260: 6728.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martini, C., Trincavelli, L., Fiorini, M., Nardi, M., Lucacchini, A., Bazzichi, L. (1998). Effect of FMLP Stimulation on [3H]-NECA Binding to Adenosine Receptors in Neutrophils Membranes. In: Griesmacher, A., Müller, M.M., Chiba, P. (eds) Purine and Pyrimidine Metabolism in Man IX. Advances in Experimental Medicine and Biology, vol 431. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5381-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5381-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7456-5

  • Online ISBN: 978-1-4615-5381-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics