Skip to main content

Summary

Recent experimental evidence has suggested T cells recognizing antigens in the context of both classical MHC class I and nonclassical class I-like molecules contribute to protective responses against Mycobacterium tuberculosis (MTB) infection. Our aims were to characterize both types of T cells, and to explore the basis of communication between the tubercle bacilli and the MHC class I pathway of the host macrophage. A model system was developed using exogenously added ovalbumin as a surrogate antigen to study presentation by MTB-infected macrophages. Viable, virulent MTB and closely related mycobacterial species facilitated the presentation of ovalbumin on MHC class I molecules to CD8+ cytolytic T cells that was dependent upon the cytosolic transport of peptides, implying communication between the MTB phagosome and the host cell cytoplasm. MHC class I presentation of soluble antigens was mimicked by Listeria monocytogenes, which grows within the host cell cytoplasm, as well as its purified hemolysin. We have also characterized T cells that recognize nonpeptide MTB antigens presented by CD1 molecules. CD1-restricted T cells demonstrated to lyse macrophages infected with virulent MTB were divided into distinct subsets based on surface phenotype (CD4-XD8- versus CD8+) and cytotoxicity mechanism (Fas receptor-mediated versus granule exocytosis). A functional consequence of these two mechanisms was observed that while both subsets lysed infected macrophages, only those T cells utilizing the granule exocytosis pathway were able to reduce viability of intracellular MTB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pedrazzini T, Hug K, Louis JA: Importance of L3T4+ and Lyt-2+ cells in the immunologc control of infection with Mycobacterium bovis strain bacillus Calmette-Guerin in mice. J Immunol 139: 2032–2037, 1987.

    PubMed  CAS  Google Scholar 

  2. Orme IM: The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol 138: 293–298, 1987.

    PubMed  CAS  Google Scholar 

  3. Flory CM, Hubbard RD, Collins FM: Effects of in vivo T lymphocyte subset depletion on mycobacterial infection. J Leuk Biol 51: 225–229, 1992.

    CAS  Google Scholar 

  4. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR: An essential role for IFN-γ in resistance to Mycobacterium tuberculosis infection. J Exp Med 178: 2249–2254, 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM: Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178: 2243–2247, 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR: Tumor necrosis factor-a is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, Levin M, Blanche S, Seboun E, Fischer A, Casanova JL: Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. New Eng J Med 335: 1556–1561, 1996.

    Article  Google Scholar 

  8. Denis M: Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol 132: 150–157, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Chan J, Xing Y, Magliozzo R, Bloom BR: Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175: 1111–1122, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Chan J, Tanaka K, Carroll D, Flynn JL, Bloom BR: Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63: 736–740, 1995.

    PubMed  CAS  Google Scholar 

  11. Orme IM, Collins FM: Adoptive protection of the Mycobacterium tuberculosis-infected lung. Cell Immunol 84: 113–120, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Muller I, Cobbold SP, Waldmann H, Kaufmnn SHE: Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 55: 2037–2041, 1987.

    PubMed  CAS  Google Scholar 

  13. DeLibero G, Flesch I, Kaufmann SHE: Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol 18: 59–66, 1988.

    Article  CAS  Google Scholar 

  14. Leveton CS, Barnass S, Champion B, Lucas S, DeSouza B, Nicol M, Banerjee D, Rook G: T-cell-mediated protection of mice against virulent Mycobacterium tuberculosis. Infect Immun 57: 390–395, 1989.

    PubMed  CAS  Google Scholar 

  15. Laochumroonvorapong P, Wang J, Liu C, Ye W, Moreira AL, Elkon KB, Freedman VH, Kaplan G: Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect Immun 65: 127–132, 1997.

    PubMed  CAS  Google Scholar 

  16. Cooper AM, D’Souza C, Frank AA, Orme IA: The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin-or granzyme mediated cytolytic mechanisms. Infect Immun 65: 1317–1320, 1997.

    PubMed  CAS  Google Scholar 

  17. Koller BH, Marrack P, Kappler JW, Smithies O: Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248: 1227–1230, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR: Major histocompatibility complex class I-re-stricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89: 12013–12017, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Myrvik QN, Leake ES, Wright MJ: Disruption of phagosomal membranes of normal alveolar macrophat-ges by the H37Rv strain of Mycobacterium tuberculosis. Am Rev Respir Dis 129: 322–328, 1984.

    PubMed  CAS  Google Scholar 

  20. McDonough KA, Kress Y, Bloom BR: Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61: 2763–2773, 1993.

    PubMed  CAS  Google Scholar 

  21. Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, Allen P, Russell DG: Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153:2568–2578, 1994.

    PubMed  CAS  Google Scholar 

  22. Clemens DL, Horwitz MA: Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181: 257–270, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Clemens DL, Horwitz MA: The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accesssible to exogenously administerted transferrin. J Exp Med 184: 1349–1355, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Russell DG, Dant J, Sturgill-Koszycki S: Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessibe to glycosphingolipids from the host cell plasmalemma. J Immunol 156: 4764–4773, 1996.

    PubMed  CAS  Google Scholar 

  25. Mazzaccaro RJ, Gedde M, Jensen ER, van Santen HM, Ploegh HL, Rock KL, Bloom BR: Major histocompatibility class I presentation of soluble antigen facilitated by Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 93: 11786–11791, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL: Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 90: 4942–4946, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Harding CV, Song R: Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 153: 4925–4933, 1994.

    PubMed  CAS  Google Scholar 

  28. Kovacsovics-Bankowski M, Rock KL: A phagosome-to-cytosol pathway for exogenous antigens presented on MHC Class I molecules. Science 267: 243–246, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Reis e Sousa C, Germain RN: Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J Exp Med 182: 841–851, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, M.H. L, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR, Bloom BR: New use of BCG for recombinant vaccines. Nature 351: 456–460, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Turner J, Dockrell HM: Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8+ T cells in vitro. Immunology 87: 339–342, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Pancholi P, Mirza A, Bhardwaj N, Steinman RM: Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260: 984–986, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Gercken J, Pryjma J, Ernst M, Flad HD: Defective antigen presentation by Mycobacterium tuberculosis-in-fected monocytes. Infect Immun 62: 3472–3478, 1994.

    PubMed  CAS  Google Scholar 

  34. VanHeyningen TK, Collins HL, Russell DG: IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. J Immunol 158: 330–337, 1997.

    PubMed  CAS  Google Scholar 

  35. Rock KL, Rothstein L, Gamble S, Fleischacker C: Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules. J Immunol 150: 438–436, 1993.

    PubMed  CAS  Google Scholar 

  36. Moreno C, Mehlert A, Lamb J: The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation. Clin Exp Immunol 74: 206–210, 1988.

    PubMed  CAS  Google Scholar 

  37. Townsend A, Ohlen C, Bastin J, Ljunggren HG, Foster L, Karre K: Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Pfeifer JD, Wick MM, Roberts RL, Findlay K, Normark SJ, Harding CV: Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361: 359–362, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S: TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-CD8+ T cells. Cell 71: 1205–1214, 1992.

    Article  PubMed  Google Scholar 

  40. Tilney LG, Portnoy DA: Actin filaments and the growth, movement and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597–1608, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Brunt LM, Portnoy DA, Unanue ER: Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol 145: 3540–3546, 1990.

    PubMed  CAS  Google Scholar 

  42. Barry RA, Bouwer HGA, Portnoy DA, Hinrichs DJ: Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 60: 1625–1632, 1992.

    PubMed  CAS  Google Scholar 

  43. Darji A, Chakroborty T, Wehland J, Weiss S: Listeriolysin generates a route for the presentation of exogenous antigens by major histocompatibility complex class I. Eur J Immunol 25: 2967–2971, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Leao SC, Rocha CL, Murillo LA, Parra CA, Patarroyo ME: A species-specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibitis hemolytic activity when expressed in Escherichia coli. Infect Immun 63: 4301–4306, 1995.

    PubMed  CAS  Google Scholar 

  45. Schwab JC, Beckers CJM, Joiner KA: The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc Natl Acad Sci USA 91: 509–513, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. High N, Mounier J, Prevost MC, Sansonetti PJ: IpaB of Shigella flexneri causes entry into epithelial cells and escape for the phagocytic vacuole. EMBO Journal 11: 1991–1999, 1992.

    PubMed  CAS  Google Scholar 

  47. Ley V, Robbins ES, Nussenzweig V, Andrews NW: The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of the acidic compartments. J Exp Med 171: 401–413, 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Kaufmann SHE: CD8+ T lymphoctyes in intracellular microbial infections. Immunology Today 9: 168–173, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Martin LH, Calabi F, Milstein C: Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci USA 83: 9154–9158, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Bleicher PA, S.P. B, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst C: Expression of murine CD1 on gastrointestinal epithelium. Science 250: 679–682, 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP: Expression of a nonpolymorphic MHC class I-like molecule, CDld, by human intestinal epithelilial cells. J Immunol 147:2518–2524, 1991.

    PubMed  CAS  Google Scholar 

  52. Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ: Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151: 6535–6545, 1993.

    PubMed  CAS  Google Scholar 

  53. Porcelli SA, Morita CT, Brenner MB: CDlb restricts the response of human CD4-CD8-T lymphocytes to a microbial antigen. Nature 360: 593–597, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ, Modlin RL: CD1-restricted T cell recognition of microbial lipoglycan antigens. 269: 227–230, 1995.

    CAS  Google Scholar 

  55. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB: Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372: 691–694, 1994.

    Article  PubMed  CAS  Google Scholar 

  56. Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, Matsumoto R, Rosat JP, Modlin RL, Porcelli SA: CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 157: 2795–2803, 1996.

    PubMed  CAS  Google Scholar 

  57. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Brenner MB, Porcelli SA, Bloom BA, Modlin RL: Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 1684–1687, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. Kagi D, Vignaux F, Ledermann G, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P: Fas and perforin pathways as major mechanism of T cell-mediated cytotoxicity. Science 265: 528–530, 1994.

    Article  PubMed  CAS  Google Scholar 

  59. Kojima H, Shinohara N, Hanaoka S, Someya-Shirota Y, Takagaki Y, Ohno H, Saito T, Katayama T, Yagita H, Okumura K, Shinkai Y, Alt FW, Matsuzawa A, Yonehara S, Takayama H: Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1: 357–364, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Braun MY, Lowin B, French L, Acha-Orbea H, Tschopp J: Cytotoxic T cells deficient in both functional Fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med 183: 657–661, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Masson D, Tschopp J: Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem 260: 9069–9072, 1985.

    PubMed  CAS  Google Scholar 

  62. Hayes MP, Berrebi GA, Henkart PA: Induction of target cell DNA release by the cytotoxic T-lymphocyte granule protease granzyme A. J Exp Med 170: 933–946, 1989.

    Article  PubMed  CAS  Google Scholar 

  63. Shiver JW, Su L, Henkart PA: Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71: 315–322, 1993.

    Article  Google Scholar 

  64. Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ: Cytotoxic lymphocytes require granzyme B for the rapid incution of DNA fragmentation and apoptosis in allogeneic target cells. Cell 78: 977–987, 1994.

    Article  Google Scholar 

  65. Nakajima H, Park HL, Henkart PA: Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin. J Exp Med 181: 1037–1046, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Masson D, Nabholz M, Estrade C, Tschopp J: Granules of cytolytic T lymphocytes contain two serine proteases. EMBO Journal 5: 1595–1600, 1986.

    PubMed  CAS  Google Scholar 

  67. Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH: Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529, 1992.

    Article  PubMed  CAS  Google Scholar 

  68. Miura M, Zhu H, Roteilo R, Hartweig EA, Yuan J: Induction of apoptosis in fibroblasts by IL-1β-convert-ing enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660, 1993.

    Article  PubMed  CAS  Google Scholar 

  69. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S: Expression of the Fas ligand in cells of the T cell lineage. J Immunol 154:3806–3813, 1995.

    PubMed  CAS  Google Scholar 

  70. Foreman JC: Spontaneous histamine secretion from mast cells in the presence of strontium. Journal of Physiology 271: 215–232, 1977.

    PubMed  CAS  Google Scholar 

  71. Neighbour PA, Huberman HS: Sr++-induced inhibition of human natural killer (NK) cell-mediated cytotoxicity. J Immunol 128: 1236–1240, 1982.

    PubMed  CAS  Google Scholar 

  72. Quan PC, Ishizaka T, Bloom BR: Studies on the mechanism of NK cell lysis. J Immunol 128: 1786–1791, 1982.

    PubMed  CAS  Google Scholar 

  73. Silva CL, Silva MF, Pietro RCLR, Lowrie DB: Characterization of T cells that confer a high degree of protective immunity against tuberculosis in mice after vaccination with tumor cells expressing mycobacterial hsp65. Infect Immun 64: 2400–2407, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Bloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazzaccaro, R.J. et al. (1998). Cytotoxic T Lymphocytes in Resistance to Tuberculosis. In: Gupta, S., Sher, A., Ahmed, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VII. Advances in Experimental Medicine and Biology, vol 452. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5355-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5355-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7443-5

  • Online ISBN: 978-1-4615-5355-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics