Skip to main content

Artificial neural networks for pattern recognition

  • Chapter
Machine Learning Methods for Ecological Applications

Abstract

The use of artificial neural networks (ANNs) for recognising patterns in biological data is explained. The architecture and training of back propagation (multilayer perceptron), radial basis function (RBF) and learning vector quantization ANNs are described, as examples of ANNs which employ supervised learning and which are appropriate for biological identification. The Kohonen self-organising map (SOM) and ART (adaptive resonance theory) are presented as valuable classification techniques. The major considerations for implementing ANNs are discussed, including software, data pre-processing and coding, optimisation, testing trained networks, and coping with missing data. General issues such as scaling up, detecting novel data patterns, modifying networks, determining significance of different parameters, and pruning networks are also dealt with. Application of the supervised training approach is illustrated with a case study on identification and quantification of marine phytoplankton from flow cytometry data, using RBF ANN. The unsupervised approach is illustrated in a case study on classification/recognition of groups of phytoplankton, using Kohonen SOMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S. and Tresp, V. 1993. Classification with missing and uncertain inputs. Proceedings IEEE International Conference on Neural Networks, San Francisco, CA. pp. 1949–1954.

    Google Scholar 

  • Arrigo, P., Giuliano, F., Scalia, F., Rapallo, A. and Damian, G. 1991. Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organizing map. Computer Applications in Biological Sciences, 7: 353–357.

    CAS  Google Scholar 

  • Balfoort, H. W., Snoek, J., Smits, J. R. M., Breedveld, L. W., Hofstraat, J. W. and Ringelberg, J. 1992. Automatic identification of algae: neural network analysis of flow cytometric data. Journal of Plankton Research, 14: 575–589.

    Article  Google Scholar 

  • Blackburn, N., Hagstrom, A., Wikner, J., Cuadros-Hansson, R. and Bjornsen, P. K. 1998. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Applied and Environmental Microbiology, 64: 3246–3255.

    PubMed  CAS  Google Scholar 

  • Boddy, L., Gimblett, A. M., Morris, C. W. and Mordue, E. J. M. 1994a. Neural network analysis of fungal spore morphometric data for identification of species in the genus Pestalotiopsis. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 4. (ed. C.H. Dagli, B.R. Fernandez, J. Ghosh and R.T.S. Kumara), ASME Press, New York, pp. 605–612.

    Google Scholar 

  • Boddy, L. and Morris, C. W. 1993. Analysis of flow cytometry data: a neural network approach. Binary, 5: 17–22.

    Google Scholar 

  • Boddy, L., Morris, C. W., Morgan, A. and Al-Haddad, L. 1998b. Neural network approaches to interpreting variability. In: Molecular variability of fungal pathogens (ed. P. D. Bridge, Y. Couteaudier and J. Clarkson), CAB International, Wallingford, UK, pp. 279–290.

    Google Scholar 

  • Boddy, L., Morris, C. W., Wilkins, M. F., Tarran, G. A. and Burkill, P. H. 1994b. Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry, 15: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Boddy, L., Wilkins, M. F. and Morris, C. W. 1998a. Effects of missing data on neural network identification of biological taxa: RBF network discrimination of phytoplankton from flow cytometry data. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 8. (ed. C.H. Dagli, M. Akay, C.L.P. Buczak, A.L. Ersoy, and B.R. Fernandez), ASME Press, New York, pp. 655–666.

    Google Scholar 

  • Boddy, L., Wilkins, M. F., Morris, C. W., Tarran, G. A., Burkill, P. H. and Jonker, R. R. 1994c. Techniques for neural network identification of phytoplankton for the EUROPA flow cytometer. Proceedings of OCEANS’ 94 OSATES Conference, Vol. 1, pp. 565–569.

    Google Scholar 

  • Bridge, P. D., Boddy, L. and Morris, C. W. 1994. Information resources for pest identification — an overview of computer-aided approaches. In: D.L. Hawksworth (ed.) Identification and Characterisation of Pest Organisms. CAB International, Wallingford, UK, pp. 153–167.

    Google Scholar 

  • Burkill, P. H. and Mantoura, R. F. C. 1990. The rapid analysis of single marine cells by flow cytometry. Philosophical Transactions of the Royal Society, A333: 99–112.

    Google Scholar 

  • Carpenter, G. A. and Grossberg, S. 1988. The ART of adaptive pattern recognition by a selforganizing neural network. Computer, March, 77–88.

    Google Scholar 

  • Carr, M. R., Tarran, G. A. and Burkill, P. H. 1996. Discrimination of marine phytoplankton species through the statistical analysis of their flow cytometric signatures. Journal of Plankton Research, 18: 1225–1238.

    Article  Google Scholar 

  • Chen, J., Atalan, E., Ward, A. C. and Goodfellow, M. 1993a. Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. FEMS Microbiology Letters, 107: 321–326.

    Article  Google Scholar 

  • Chen, J., Atalan, E. Kim, H. J, Hamid, M. E., Tru-Jillo, M. E., Magee, J. G., Mafio, G. Ward, A. C. and Goodfellow, M. 1993b. Rapid identification of streptomycetes by artificial neural network analysis of pyrolysis mass spectra FEMS Microbiology Letters, 114: 115–120.

    Article  Google Scholar 

  • Chen, S., Cowan, C. F. N. and Grant, P. M. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2: 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Chon, T.-S., Park, Y. S., Moon, K. H. and Cha, E. Y. 1996. Patternizing communities by using an artificial neural network. Ecological Modelling, 90: 68–69.

    Article  Google Scholar 

  • Culverhouse, P. F., Ellis, R., Simpson, R. G., Williams, R., Pierce, R. W. and Turnver, J. T. 1994. Automatic categorisation of five species of Cymatocylis (Protozoa, Tintinnida) by artificial neural network. Marine Ecology Progress Series, 107: 273–280.

    Article  Google Scholar 

  • Culverhouse, P. F., Simpson, R. G, Ellis, R., Lindley, J. A., Williams, R., Parisini, T., Regeura, B, Bravo, I., Zoppoli, R., Earnshaw, G., McCall, H. and Smith, G. 1996. Automatic classification of field collected dinoflagellates by artificial neural network. Marine Ecology Progress Series, 139: 281–287.

    Article  Google Scholar 

  • Demers, S., Kim, J., Legendre, P. and Legendre, L. 1992. Analysing multivariate flow cytometric data in aquatic sciences. Cytometry, 13: 291–298.

    Article  PubMed  CAS  Google Scholar 

  • DeSieno, D. 1988. Adding a conscience to competitive learning. In: Proceedings of the International Conference on Neural Networks, Vol. 1, IEEE Press, New York, pp. 117–124.

    Chapter  Google Scholar 

  • Dunn, G. and Everitt, B. S. 1982. An introduction to mathematical taxonomy. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ferran, E. A. and Ferrara, P. 1991. Topological maps of protein sequences. Biological Cybernetics, 65:451–458.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, D. S., Olson, R. J., Frankel, S. L. and Chisholm, S. W. 1989. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations. Cytometry, 10: 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Frankel., D. S., Frankel, S. L., Binder, B. J. and Vogt, R. F. 1996. Application of neural networks to flow cytometry data analysis and real-time cell classification. Cytometry, 23: 290–302.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R., Goodacre, R., Sisson, P. R., Magee, J. G., Ward, A. C. and Lightfoot, N. F. 1994. Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra Journal of Medical Microbiology, 40: 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Goodacre, R. Neal, M. R., Kell, D. B., Greenham, L. W., Noble, W. C. and Harvey, R. G. 1994. Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. Journal of Applied Bacteriology, 13: 157–160.

    Google Scholar 

  • Goodacre, R., Hiom, S. J., Cheeseman, S. L., Murdoch, D., Weightman, A. J. and Wade, W. G. 1996. Identification and discrimination of oral asaccharolytic Eubacterium spp. by pyrolysis mass spectrometry and artificial neural networks. Current Microbiology, 32: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Granjeon, E. and Tarroux, P. 1995. Detection of compositional constraints in nucleic acid sequences using neural networks. CABIOS, 11: 29–37.

    PubMed  CAS  Google Scholar 

  • Guégan, J.-F., Lek, S. and Oberdorff, T. 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature, 391: 382–384.

    Article  Google Scholar 

  • Gupta, A. and Lam, M. S. 1996. Estimating missing values using neural networks. Journal of the Operational Research Society, 47: 229–238.

    Google Scholar 

  • Hanke, J., Beckmann, G., Bork, P. and Reich, J. G. 1996. Self organizing hierarchic networks for pattern recognition in protein sequence. Protein Science, 5: 72–84.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, J. and Reich, J. G. 1996. Kohonen map as a visualization tool for the analysis of protein sequences: multiple alignments, domains and segments of secondary structures. CABIOS, 12: 447–454.

    PubMed  CAS  Google Scholar 

  • Jonker, R. R., Ringelberg, J., Dubelaar, Konig, J. W., Van Veen, J. J. F., Wietzorrek, J., Kachel, V., Cunningham, A., Burkill, P. H., Tarran, G., Wilkins, M. F., Boddy, L., Morris, C. W. and Peeters, J. C. H. 1995. A European Optical Plankton Analysis System: flow cytometer based technology for automated phytoplankton identification and quantification. In: Marine Science and Technologies. 2nd MAST days and EUROMAR market (ed. M. Weydert, E. Lipiatou, R. Goni, C. Frangakis, M. Bohle-Carbonell, K.-G. Barthel), pp. 945–956, CEC, Brussels.

    Google Scholar 

  • Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. and Aulagnier, S. 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90: 39–52.

    Article  Google Scholar 

  • Levine, E. R., Kimes, D. S. and Sigillito, V. G. 1996. Classifying soil structure using neural networks. Ecological Modelling, 92: 101–108.

    Article  Google Scholar 

  • Mahadevan, I. and Ghosh, I. 1994. Analysis of E. coli promoter structures using neural networks. Nucleic Acids Research, 22: 2158–2165.

    Article  PubMed  CAS  Google Scholar 

  • Mastorillo, S., Lek, S., Dauba, F. and Belaud, A. 1997. The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biology, 38: 237–246.

    Article  Google Scholar 

  • Morgan, A., Boddy, L., Morris, C. W. and Mordue, J. E. M. 1998. Identification of species in the genus Pestalotiopsis from spore morphometric data: a comparison of some neural and non-neural methods. Mycological Research, 102: 975–984.

    Article  Google Scholar 

  • Morris, C. W. and Boddy, L. 1995. Artificial neural networks in identification and systematics of eukaryotic microorganisms. Binary, 7: 70–76.

    Google Scholar 

  • Morris, C. W. and Boddy, L. 1996. Classification as unknown by RBF networks: discriminating phytoplankton taxa from flow cytometry data. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 6. (ed. C.H. Dagli, M. Akay, C.L.P. Chen, B.R. Fernandez and J. Ghosh. ASME Press, New York, pp. 629–634.

    Google Scholar 

  • Morris, C. W. and Boddy, L. 1998. Partitioned RBF networks for identification of biological taxa: discrimination of phytoplankton from flow cytometry data. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 8. (ed. C. H. Dagli, M. Akay, C. L. P. Buczak, A. L. Ersoy, and B. R. Fernandez. ASME Press, New York, pp. 637–642.

    Google Scholar 

  • Morris, C. W., Boddy, L., and Altaian, R. 1992. Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycological Research, 96: 697–701.

    Article  Google Scholar 

  • Neural Ware Inc. 1991. Neural computing, Pittsburgh, USA: Neural Ware Inc.

    Google Scholar 

  • Newbury, P. F., Culverhouse, P. F. and Pilgrim, D. A. 1995. Automatic fish population counting by artificial neural networks. Aquaculture, 133: 45–55.

    Article  Google Scholar 

  • Noordewier, M. O., Towell, G. G. and Shavlik, J. W. 1991. Training knowledge-based neural networks to recognize genes in DNA sequences. In: R. Lippmann, J. Moody, and D. Touretsky (ed.) Advances in Neural Information Processing Systems, Vol. 3. Morgan Kaufmann, San Mateo, California.

    Google Scholar 

  • Reby, D., Joachim, J., Lauga, J., Lek, S. and Aulagnier, S. 1998. Individuality in the groans of fallow deer (Dama dama) bucks. Journal of Zoology, London, 245: 79–84.

    Article  Google Scholar 

  • Reed, R. 1993. Pruning algorithms — a survey. IEEE Transactions on Neural Networks, 4: 740–747.

    Article  PubMed  CAS  Google Scholar 

  • Richard, M. D. and Lippmann, R. P. 1991. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 3: 461–483.

    Article  Google Scholar 

  • Sarle, W.S. 1994. Neural networks and statistical models. Proceedings of nineteenth annual SAS users group international conference, Cary, N.C. SAS Institute, pp. 1538–1550. ftp://ftp.sas.com/pub/neural/neurall.ps

  • Schindler, J., Paryzek, P. and Farmer, J. III 1994. Identification of bacteria by artificial neural networks. Binary, B6: 191–196.

    Google Scholar 

  • Sharpe, P. K. and Solly, R. J. 1995. Dealing with missing values in neural-network based diagnostic systems. Neural Computing and Applications, 3: 73–77.

    Article  Google Scholar 

  • Simpson, R., Williams, R., Ellis, R. and Culverhouse, P. F. 1992. Biological pattern recognition by neural networks. Marine Ecology Progress Series, 79: 303–308.

    Article  Google Scholar 

  • Smits, J. R. M., Breedveld, L. W., Derksen, M. W. J., Kateman, G., Balfoort, H. W., Snoek, J. and Hofstraat, J. W. 1992. Pattern classification with artificial neural networks: classification of algae, based upon flow cytometer data. Analytica Chimica Ada, 258: 11–25.

    Article  CAS  Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R. dy1973. Numerical taxonomy. W.H. Freeman, San Francisco.

    Google Scholar 

  • Tan, S. S. and Smeins, F. E. 1996. Predicting community changes with an artificial neural network. Ecological Modelling, 84: 91–97.

    Article  Google Scholar 

  • Wilkins, M. F., Boddy, L. and Morris, C. W. 1994a. Kohonen maps and learning vector quantization neural networks for analysis of multivariate biological data. Binary, 6: 64–72.

    Google Scholar 

  • Wilkins, M. F., Boddy, L., Morris, C. W. and Jonker, R. 1996. A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytometry data. CABIOS, 12: 9–18.

    PubMed  CAS  Google Scholar 

  • Wilkins, M. F., Morris, C. W. and Boddy, L. 1994b. A comparison of radial basis function and backpropagation neural networks for identification of marine phytoplankton from multivariateflow cytometry data. CABIOS, 10: 285-294.

    Google Scholar 

  • Wu, C. and Shivakumar, C. 1994. Back-propagation and counter-propagation neural networks for phylogenetic classification of ribosomal RNA sequences. Nucleic Acids Research, 22: 4291–4299.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boddy, L., Morris, C.W. (1999). Artificial neural networks for pattern recognition. In: Fielding, A.H. (eds) Machine Learning Methods for Ecological Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5289-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5289-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7413-8

  • Online ISBN: 978-1-4615-5289-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics