Skip to main content

Vasopressin Regulates Adrenal Functions by Acting through Different Vasopressin Receptor Subtypes

  • Chapter
Vasopressin and Oxytocin

Abstract

In mammals, vasopressin is known to be synthesized in the hypothalamus and released in the blood stream at the pituitary level. This neuropeptide is also synthesized and secreted by the adrenal medulla in many species including human. Moreover, agents like acetylcholine and corticotropin releasing factor stimulates its basal secretion. V1a vasopressin receptors are present in the adrenal cortex and are involved in steroids secretion (aldosterone in the zona glomerulosa and glucocorticoids in the zona fasciculata of some species). These receptors are coupled to phospholipase Cβ and to dihydropyridine-sensitive calcium channels via heterotrimeric G proteins differing by their sensitivities to pertussis toxin. The adrenal medulla, from many species, exhibits V1a vasopressin receptors. In rat adrenal medulla, functional Vlb vasopressin receptors could also be characterized. These receptors stimulate catecholamines secretion via activation of phospholipase Cβ and subsequent mobilization of intracellular calcium.

The adrenal medulla secretes AVP and exhibits functional vasopressin receptors. The adrenal cortex also possesses functional vasopressin receptors and is in contact with adrenal medulla via “medullary rays”. We may thus reasonably conclude that AVP physiologically regulates adrenal gland functions via autocrine/paracrine mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jard S 1983 Vasopressin isoreceptors in mammals: relation to cyclic AMP-dependent and cyclic AMP independent transduction mechanisms. Curr Top Membr Transp 1: 225–285.

    Google Scholar 

  2. Guillon G 1989 Les récepteurs à la vasopressine, l’ocytocine et l’angiotensine II chez les mammifères. In: (eds) Ann. Endocrinol. Paris, 50 pp 425–433

    Google Scholar 

  3. Baylis P 1989 Vasopressin and its neurophysin. In: De Groot LI (eds) Endocrinology. W.B. Saundern Company, Philadelphia, 1 pp 213–219

    Google Scholar 

  4. Imbert-Teboul M, Chabardès D, Montaigut M, Clique A, Morel F 1978 Vasopressin-dependent adenylate cyclase in the rat kidney medulla: evidence for two separate sites of actions. Endocrinology 102: 1254–1261.

    Article  PubMed  CAS  Google Scholar 

  5. Nussdorfer G 1996 Paracrine control of adrenal cortical functions by medullary chromaffin cells. Pharmacol Reviews 48: 495–530.

    CAS  Google Scholar 

  6. Grazzini E, Loedboerer A, Perez-Martin A, Joubert D, Guillon G 1996 Molecular and functional characterization of V lb vasopressin receptor in rat adrenal medulla. Endocrinology 137: 3906–3914.

    Article  PubMed  CAS  Google Scholar 

  7. Guillon G, Trueba M, Joubert D, Grazzini E, Chouinard L, Côte M, Payet M, Manzoni O, Barberis C, Robert M, Gallo-Payet N 1995 Vasopressin stimulates steroid secretion in human adrenal glands. Endocrinology 136: 1225–1295.

    Article  Google Scholar 

  8. Suda T, Tomori N, Tozana F, Mouri T, Demupa H, Shizume K 1984 Distribution and characterization of irCRF in human tissues. J Clin Endocrinol Metab 59: 861–867.

    Article  PubMed  CAS  Google Scholar 

  9. Grazzini E, Durroux T, Payet M, Bilodeau L, Gallo-Payet N, Guillon G 1996 Membrane-delimited G protein-mediated coupling between VIa vasopressin receptor and dihydropyridine binding sites in rat glomerulosa cells. Mol Phannacol 50: 1273–1283.

    CAS  Google Scholar 

  10. Hilton JG, 1960 Adrenocorticotropin action of antidiuretic hormone. Circulation 21: 1038–1047.

    Article  PubMed  CAS  Google Scholar 

  11. Payet N, Isler H 1976 Adrenal glomerulosa mitotic stimulation by posterior pituitary hormones. Cell Tiss Res 172: 93–101

    CAS  Google Scholar 

  12. Payet N, Lehoux J 1980 A comparative study of the role of vasopressin and ACTH in the regulation of growth and function of rat adrenal gland. J Steroid Biochem 12: 461–467.

    Article  PubMed  CAS  Google Scholar 

  13. Guillon G, Payet N 1986 Specific vasopressin binding to rat adrenal glomerulosa cells. Biochem J 235: 209.

    PubMed  CAS  Google Scholar 

  14. Gallo-Payet N, Chouinard L, Balestre M, Guillon G 1991 Involvement of protein kinase C in the coupling between the VI vasopressin receptor and phospholipase C in rat glomerulosa cells. Endocrinology 129: 623–634.

    Article  PubMed  CAS  Google Scholar 

  15. Herlitze S, Garcia D, Macki K, Hille B, Scheuer T, Caterall W 1996 Modulation of Ca++ channels by G-protein 13y subunits. Nature 380: 258–262.

    Article  PubMed  CAS  Google Scholar 

  16. Drolet P, Bilodeau L, Charvatova A, Laflamme L, Gallo-Payet N, Payet MD 1997 Inhibition of the T-type calcium current by the dopamine D1 receptor in rat glomerulosa cells: requirement of combined action of GP protein subunit and cyclic adenosine 3'-5'monophosphate. Mol Endocrinol 11: 503–514.

    Article  PubMed  CAS  Google Scholar 

  17. Perraudin V, Delarue C, Lefèvre H, Comtesse V, Kuhn V, Vaudry H 1993 Vasopressin stimulates cortisol secretion from human adrenocortical tissue through activation of VI vasopressin receptor. J Clin Endocrinol Metab 76: 1522–1528.

    Article  PubMed  CAS  Google Scholar 

  18. Bird I, Nicol M, Williams B, Walker S 1990 Vasopressin stimulates cortisol secretion and phosphoinositol metabolism in cultured bovine adrenal fasciculata/reticularis cells. J Mol Endocrinol 5: 109–116.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider E 1988 Effect of vasopressin on adrenal steroidogenesis. Am J Physiol 255: R806--R811.

    PubMed  CAS  Google Scholar 

  20. Mazzochi G, Markowska A, Malendowicz L, Nusato F, Meneghelli V, Nussdorfer G 1993 Evidence that endogenous AVP is involved in the maintenance of growth and steroidogenic capacity of rat adrenal zona glomerulosa. J Steroid Biochem Mol Biol 45: 251–256.

    Article  Google Scholar 

  21. Mazzocchi G, Malendowicz LK, Meneghelli V, Gottardo G, Nussdorfer GG 1995 In vitro and in vivo studies of the effects of AVP on the secretion and growth of rat adrenal cortex. Histol Histopathol 10: 359–370.

    Google Scholar 

  22. Guillon G, Balestre M, Chouinard L, Gallo-Payet N 1990 Involvement of distinct G proteins in the action of vasopressin on rat glomerulosa cells. Endocrinology 125: 1699–1708.

    Article  Google Scholar 

  23. Antoni F 1984 Characterization of high affinity binding sites for vasopressin in bovine adrenal medulla. Neuropeptides 4: 413–420.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor AH, Whitley G, St J, Nussey SS 1989 The interaction of AVP and OT with bovine adrenal medulla cells. J of Endocrinology 121: 133–139.

    Article  CAS  Google Scholar 

  25. Schwartz J, Derdowska I, Sobocinska M, Kuprysensky G 1991 A potent new synthetic analog of vasopressin with relative agonist specificity for the pituitary. Endocrinology 129: 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  26. Serradeil-Le Gal C, Wagnon J, Garcia C, Lacour C, Guiraudou P, Christophe B, Villanova G, Nizato D, Maffrand J, Le Fur G, Guillon G, Cantau B, Barberis C, Trueba M, Ala Y, Jard S 1993 Biochemical and pharmacological properties of SR 49059, a new potent non-peptide antagonist in rat and human vasopressin Vla receptor. J Clin Invest 92: 224–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grazzini, E. et al. (1998). Vasopressin Regulates Adrenal Functions by Acting through Different Vasopressin Receptor Subtypes. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics