Skip to main content

α-Gal Epitopes on Viral Glycoproteins

  • Chapter
α-Gal and Anti-Gal

Part of the book series: Subcellular Biochemistry ((SCBI,volume 32))

Abstract

The α-gal epitope (Galα1,3Galβl,4GlcNAc-R) is a terminal glycosidic structure that is expressed on the surface of cells from most mammalian species other than humans, apes and Old World monkeys (Galili et al., 1988a; Galili et al., 1987). The terminal α-galactosyl unit of this epitope is added to nascent glycolipids and glycoproteins in the Golgi apparatus by α1,3galactosyltransferase (α1,3GT). In primates lacking the α-gal epitope, the α1,3GT gene is not transcribed, and nonsense mutations are present within the coding region of some species (Galili and Swanson, 1991; Larsen et al., 1990a; Joziasse et al., 1989). The presence of a functional α1,3GT in New World monkeys suggests that this gene was inactivated in ancestral Old World monkeys and apes after their divergence from New World monkeys (Galili et al., 1988a). A detailed comparison of the α1,3GT pseudogene sequences in Old World monkeys and apes further suggests that this gene was inactivated after these two groups diverged from each other (Galili and Andrews, 1995; Galili and Swanson, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aaronson, S.A. and Todaro, G.J., 1970. Transformation and virus growth by murine sarcoma viruses in human cells, Nature 225:458–459.

    PubMed  CAS  Google Scholar 

  • Air, G.M. and Laver, W.G., 1990, Influenza Viruses, in: lmmunochemistry of Viruses. II. The Basis for Serodiagnosis, and Vaccines (M.H. V. van Regemorted. and A.R. Neurath, eds.), Elsevier Science Publications, Amsterdam, pp. 171–216.

    Google Scholar 

  • Almeida, I.C., Milani, S.R., Gorin, A.J., and Travoassos, L.R., 1991, Complement-mediated lysis of Trypanosoma cruzi tryptomastigotes by human anti α-galactosyl antibodies, J. Immunol. 146:2394–2400.

    PubMed  CAS  Google Scholar 

  • Anderson, W.A., 1992, Human gene therapy, Science 256:808–813.

    PubMed  CAS  Google Scholar 

  • Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα 1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania, J. Immunol. 142:2828–2834.

    PubMed  CAS  Google Scholar 

  • Banapour, B., Sernatinger, J., and Levy, J.A., 1986, The AIDS-associated retrovirus is not sensitive to lysis or inactivation by human serum, Virol. 152:268–271.

    CAS  Google Scholar 

  • Barbacid, M., Bolognesi, D., and Aaronson, S.A., 1980, Humans have antibodies capable of recognizing oncoviral glycoproteins: demonstration that these antibodies are formed in response to cellular modification of glycoproteins rather than as consequence of exposure to virus, Proc. Natl. Acad. Sci. USA 77:1617–1621.

    PubMed  CAS  Google Scholar 

  • Bartholomew, R.M., Esser, A.F.,and Muller-Eberhard, H.J., 1978, Lysis of oncornaviruses by human serum: isolation ofthe viral complement (Cl) receptor and identification aspl5E,J. Exp. Med. 147:844–53.

    PubMed  CAS  Google Scholar 

  • Basu, M. and Basu, S., 1973, Enzymatic synthesis of a blood group-related pentaglycosyl ceramide by an α-galactosyltransferase from rabbit bone marrow, J. Biol. Chem. 248:1700–1706.

    PubMed  CAS  Google Scholar 

  • Betteridge, A. and Watkins, W.M., 1983, Two α-2-D-galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities, Eur. J. Biochem. 132:29–35.

    PubMed  CAS  Google Scholar 

  • Blake, D.D. and Goldstein, I.J., 1981, An α-D-galactosyltransferase in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide [α-D-galactose (1–3)-N-acetyllactosamine], J. Biol. Chem. 256:5387–5393.

    PubMed  CAS  Google Scholar 

  • Blanken, W.M. and Ban den Eijnden, D.H., 1985, Biosynthesis of terminal Galα 1–3Galβ 1–4GIcNAc-R oligosaccharide sequence on glycoconjugates: purification and acceptor specificity of a UDP-Gal: N-acetyllactosaminide α 1-3 galactosyltransferase, J. Biol. Chem. 260:12927–12934.

    PubMed  CAS  Google Scholar 

  • Boiron, R.R., Bernard, C., and Chuat, J.C., 1969, Replication of mouse sarcoma virus Moloney strain (MSV-N) in human cells, Proc. Amer. Assoc. Cancer Res. 10:8.

    Google Scholar 

  • Burke, D.J. and Keegstra, K., 1976, Purification and composition ofthe proteins from Sindbis virus grown in chick and BHK cells, J. Virol. 20:676–686.

    PubMed  CAS  Google Scholar 

  • Cardoso, J.E., Branchereau, S., Jeyaraj, P.R., Houssin, D., Danos, O., and Heard, J.-M., 1993, In situ retrovirus-mediated gene transfer into dog liver, Hum. Gene Ther. 4:411–418.

    PubMed  CAS  Google Scholar 

  • Chang, G.-J.J. and Trent, D.W., 1987, Nucleotide sequence of the genome region encoding the 26S mRNA of eastern equine encephalomyelitis virus and the deduced amino acid sequence of the viral structural proteins, J. Gen. Virol. 68:2129–2142.

    PubMed  CAS  Google Scholar 

  • Cooper, N.R., Jensen, F.C., Welsh, R.M., Jr., and Oldstone, M.B. A., 1976, Lysis of RN A tumor viruses by human serum: direct antibody-independent triggering ofthe classical complement pathway, J. Exp. Med. 144:970–984.

    PubMed  CAS  Google Scholar 

  • Cornetta, K., Moen, R.C., Culver, K., Morgan, R.A., McLachlin, J.R., Stu S., Selegue, J., London, W., Blaese, R.M., and Anderson, W.F., 1990, Amphotropic murine leukemia retrovirus is not an acute pathogen for primates, Hum. Gene Ther. 1:15–30.

    PubMed  CAS  Google Scholar 

  • Cornetta, K., Morgan, R.A., and Anderson, W.F., 1991, Safety issues related to retroviral-mediated gene transfer in humans, Hum. Gene Ther. 2:5–14.

    PubMed  CAS  Google Scholar 

  • Cosset, F.-C, Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., 1995, High-titer packaging cells producing recombinant retroviruses resistant to human serum, J. Virol. 69:7430–7436.

    PubMed  CAS  Google Scholar 

  • Culver, K.W., 1994, Clinical applications of gene therapy for cancer, Clin. Chem. 40:510–512.

    PubMed  CAS  Google Scholar 

  • Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H., and Blaese, R.M., 1992, In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors, Science 256:1550–1552.

    PubMed  CAS  Google Scholar 

  • Dalmasso. A.P., Vercellotti, G.M., Fischel. R.J., Bolman. R.M., Bach. F.H., and Platt. J.L., 1992. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am. J. Paihnl. 140:1 157–1168.

    Google Scholar 

  • Donahue, R.E., Kessler. S.W., Bodine. D., Goodman. S., Agncola. B., Byrne. E., Raffeld, M., Moen. R., Bacher, J., Zsebo. K.M., and Nienhuis. A.W., 1992. Helper virus induced T cell Lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176:1125–1135.

    PubMed  CAS  Google Scholar 

  • Famulari, N.G., 1983, Murine leukemia viruses with recombinam env genes: a discussion of their role in leukemogenesis. Curr. Top. Microbiol. Immunol. 103:103–108.

    Google Scholar 

  • Ferry, N., Duplessis. O., Houssin. D., Danos. O., and Heard, J.-M., 1991. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc. Nail. Acad. Sci. USA 88:8377–8381.

    CAS  Google Scholar 

  • Galili, U., 1993a, Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody. Springer Semin. Immunopathol. 15:155–171.

    PubMed  CAS  Google Scholar 

  • Galili, U., 1993b. Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol. Today 14:480–482.

    PubMed  CAS  Google Scholar 

  • Galili, U. and Andrews. P., 1995. Suppression of α-galactosyl epitopes synthesis and production of the natural anti-gal antibody: a major evolutionary event in ancestral Old World primates. J. Hum. Evol. 29:433–443.

    Google Scholar 

  • Galili, U., and Swanson, K., 1991. Gene sequences suggest inactivation of α1,3galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Satl. Acad. Sci. USA 88:7401–7404.

    CAS  Google Scholar 

  • Galili, U., Rachmilewitz, E.A., Peleg, A., and Flechner. I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificity.J. Exp. Med. 160:1519–1531.

    PubMed  CAS  Google Scholar 

  • Galili, U., Macher, B.A., Buehler, J., and Shohet, S.B., 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1–3)-linked galactose residues. J. Exp. Med. 162:573–582.

    PubMed  CAS  Google Scholar 

  • Galili. U., Clark, M.R., Shohet. S.B., Buehler, J., and Macher, B.A., 1987. Evolutionary relationship between the natural anti-Gal antibody and the Galα1–3Gal epitope in primates. Proc. Satl. Acad. Sci. USA 84:1369–1373.

    CAS  Google Scholar 

  • Galili, U., Shohet, S.B., Kobrin. E., Stults. C.L.M., and Macher. B.A., 1988a. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263:17755–17762.

    PubMed  CAS  Google Scholar 

  • Galili, U., Mandrell, R.E., Hamadeh. RM. Shohet. S.B., and Griffis. J.M., 1988b, Interaction between human natural anti-agalactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.

    PubMed  CAS  Google Scholar 

  • Galili, U., Repik, P.M., Anaraki, F., Mozdzanowska, K., Washko, C. and Gerhard. W., 1996, Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody. Vaccine 256:160–178.

    Google Scholar 

  • Galili, U., La Temple. D.C.and Radic. M.Z., 1998. A sensitive assay for measuring α-gal epitope expression by a monoclonal anti-Gal antibody. Transplantation 65:1129–1132.

    PubMed  CAS  Google Scholar 

  • Geyer, R., Geyer, H., Stirm, S., Hensmann, C. Schneider, J., Dabrowski, U., and Dabrowski, J., 1984, Major oligosaccharides in the glycoprotein of Friend murine leukemia virus: structure elucidation by one-and two-dimensional proton nuclear magnetic resonance and methylation analysis. Biochem. 23:5628–5637.

    CAS  Google Scholar 

  • Goochee, CF., Gramer, M.J., Andersen, D.C., Baher, J.B., and Rasmussen, J.R., 1991, The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology 9:1347–1355.

    PubMed  CAS  Google Scholar 

  • Hamadeh, R.M., Jarvis, C.A., Galili, U., Mandrell, R.E., Zhou. P., and Griffiss, J.M., 1992, Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces, J. Clin. Invest. 89:1223–1235.

    PubMed  CAS  Google Scholar 

  • Hamadeh, R.M., Galili, U., Zhou, P., and Griffis, J.M., 1995a, Anti-α-galactosyl immunoglobulin A (IgA), IgG and IgM in human secretions. Clin. Diagnos. Lab. Immunol. 2:125–131.

    CAS  Google Scholar 

  • Hamadeh, R.M., Estabrook, M.M., Zhou, P., Jarvis, G.A., and Griffiss, J.M., 1995b, Anti-gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing, Infect. Immun. 63:4900–4906.

    PubMed  CAS  Google Scholar 

  • Hatzoglou, M., Lamers, W., Bosch, F., Wynshaw-Boris, A., Clapp, D.W., and Hanson, R.W., 1990, Hepatic gene transfer in animals using retroviruses containing the promoter from the gene for phosphoenolpyruvate carboxykinase, J. Biol. Chem. 265:17285–17293.

    PubMed  CAS  Google Scholar 

  • Hoshino, H., Tanaka, H., Miwa, M., and Okada, H., 1984, Human T-cell leukemia virus is not lysed by human serum, Nature 310:324–325.

    PubMed  CAS  Google Scholar 

  • Hsieh, P., Rosner, M.R., and Robbins, P.W., 1983. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins, J. Biol. Chem. 258:2548–2554.

    PubMed  CAS  Google Scholar 

  • Jensen, F.C., Girardi, A.J., Gilden, R.V., and Koprowski, H., 1964, Infection of human and simian tissue cultures with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 52:53–57.

    PubMed  CAS  Google Scholar 

  • Jolly, D., 1994, Viral vector systems for gene therapy, Cancer Gene Ther. 1:51–64.

    PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.J., and Shaper, N.L., 1989, Bovine α1–3-galactosyltransferase: isolation and characterization of a cDNA clone, J. Biol. Chem. 264:14290–14297.

    PubMed  CAS  Google Scholar 

  • Kiel, W., Geyer, R., Dabrowski, J., Dabrowski, U., Niemann, H., Strim. S., and Klenk, H.-D., 1985, Carbohydrates of influenza virus. Structure elucidation of the individual glycans of the hemagglutinin by two-dimensional H NMR, and methylation analysis, EMBOJ. 4:2711–2720.

    Google Scholar 

  • Klenk, H.-D., 1990, II. Influence of Glycosylation on Antigenicity of Viral Proteins, in: Immunochemistry of Viruses (M.H.V. van Regemortel, and A.R. Neurath, eds.), Elsevier Science Publications, New York, pp. 25–37.

    Google Scholar 

  • Klenk, H.-D. and Rott, R., 1980, Cotranslational and posttranslational processing of viral glycoproteins, Curr. Top. Microbiol. Immunol. 90:19–48.

    PubMed  CAS  Google Scholar 

  • Kornfeld, R. and Kornfeld, S., 1976, Comparative aspects of glycosylation structure, Ann. Rev. Biochem. 45:217–237.

    PubMed  CAS  Google Scholar 

  • Kornfeld, R. and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54:631–664.

    PubMed  CAS  Google Scholar 

  • Larsen, R.D., Riverα-Marrero, C.A., Ernst, L.K., Cummings. R.D., and Lowe, J.B., 1990a, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal β-D-Gal(l,4)-D-GlcNAc α(1,3)galactosyltransferasecDNA, J. Biol. Chem. 265:7055–7062.

    PubMed  CAS  Google Scholar 

  • Larsen, R.D., Ernst, L.K., Nair, R.P., and Lowe, J.B., 1990b, Molecular cloning, sequence, and expression of a human GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase cDN A that can form the H blood group antigen, Proc. Natl. Acad. Sci. USA 87:6674–6678.

    PubMed  CAS  Google Scholar 

  • La Temple, D.C., and Galili, U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α,3galactosyltransferase, Xenotransplantation (in press).

    Google Scholar 

  • Lemischka, I.R., Raulet, D.H., and Mulligan, R.C., 1986, Developmental potential and dynamic behavior of hematopoietic stem cells. Clin. Diagnos. Lab. Immunol. 45:917–927.

    CAS  Google Scholar 

  • Lower, J., Davidson, E.A., Teich, N.M., Weiss, R.A., Joseph, A.P., and Kurth, R., 1981, Hetrophil human antibodies recognize oncovirus envelope antigens: epidemiological parameters and immunological specificity of the reaction, Virol. 109:409–417.

    CAS  Google Scholar 

  • Marschang, P., Sodroski, J., Wurzner, R., and Dierich, M.P., 1995, Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement, Eur. J. Immunol. 25:285–290.

    PubMed  CAS  Google Scholar 

  • Miller, A.D., 1992, Human gene therapy comes of age. Nature 357:455–460.

    PubMed  CAS  Google Scholar 

  • Miller, A.D. and Rosman, G.J., 1989, Improved retroviral vectors for gene transfer and expression, Biotechniques 7:980–990.

    PubMed  CAS  Google Scholar 

  • Moorman, D.W., Butler. D.A., Stanley. J.D., Lamsam. J.L., Ackermann. M.R., Jacobson. C.D., and Culver, K.W., 1994. Survival and toxicity of xenogeneic murine retroviral vector producer cells in liver. J. Surg. Oncol. 57:152–156.

    PubMed  CAS  Google Scholar 

  • Morris, C.D., 1988, Eastern Equine Encephalomyelitis. in: The Arhoviruses: Epidemiology and Ecology (T.P. Month, ed.). CRC Press. Boca Raton, pp. 1–20.

    Google Scholar 

  • Muller-Eberhard. H.J., 1988, Molecular organization and function of the complement system. Ann. Rev Biochem. 57:321–347.

    PubMed  CAS  Google Scholar 

  • Naldini, L., Blomer, U., Gallay, P., Ory. D., Mulligan, R., Gage. F.H., Verma. I.M., and Trono. D., 1996, In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267.

    PubMed  CAS  Google Scholar 

  • Neethling. F.A., Koren. E., Ye. Y., Richards. S.V., Kujundzic. M., Oriol, R., and Cooper. D.K.C., 1994, Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by α-galactosyl oligosaccharides. Transplantation 57:959–963.

    PubMed  CAS  Google Scholar 

  • Oldfield. E.H. and Ram. Z., 1995. Intrathecal gene therapy for the treatment of leptomeningeal carcinomatosis. Hum. Gene Ther. 6:55–85.

    PubMed  CAS  Google Scholar 

  • Oldfield, E.H., Ram, Z., Culver, K.W., Blaese, R.M., and DeVroom. H.L., 1993. Gene therapy for the treatment of brain tumors using intrα-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir, Hum. Gene Ther. 4:39–69.

    PubMed  CAS  Google Scholar 

  • Platt, J.L., Vercellotti, G.M., Dalmasso, A.P., Matas. A.J., Bolman, R.M., Najarian, J.S., and Bach, F.H., 1990, Transplantation of discordant xenografts: a review of progress. Immunol. Today 11:456–457.

    Google Scholar 

  • Rademacher, T.W., Parekh, R.B., and Dwek. R.A., 1988, Glycobiology, Ann. Rev. Biochem. 57:785–838.

    PubMed  CAS  Google Scholar 

  • Raffel, C., Culver, K., Kohn. D., Nelson, M., Siegel, S., Gillis, F., Link. C.J., and Villablanca. J.G., 1994, Gene therapy for the treatment of recurrent pediatric malignant astrocytomas with in vivo tumor transduction with the herpes simplex thymidine kinase gene/ganciclovir system. Hum. Gene Ther. 5:863–890.

    PubMed  CAS  Google Scholar 

  • Ram, Z., Culver, K.W., Walbridge, S., Blaese, R.M., and Oldfield, E.H., 1993a, In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats, Cancer Res. 53:83–88.

    PubMed  CAS  Google Scholar 

  • Ram, Z., Culver, K.W., Walbridge. S., Frank. J.A., Blaese, R.M., and Oldfield, E.H., 1993b, Toxicity studies of retroviral-mediated gene transfer for the treatment of brain tumors, J. Neurosurg. 79:400–407.

    PubMed  CAS  Google Scholar 

  • Ram, Z., Walbridge, S., Heiss. J.D., Culver, K.W., Blaese, R.M., and Oldfield, E.H., 1994a, In vivo transfer of the human interleukin-2 gene: negative tumoricidal results in experimental brain tumors, J. Neurosurg. 80:535–540.

    PubMed  CAS  Google Scholar 

  • Ram, Z., Walbridge, S., Oshiro, E.M., Viola. J.J., Chiang, Y., Mueller, S.N., Blaese. R.M., and Oldfield, E.H., 1994b. Intrathecal gene therapy for malignant leptomeningeal neoplasia. Cancer Res. 54:2141–2145.

    PubMed  CAS  Google Scholar 

  • Ram, Z., Walbridge, S., Shawker. T., Culver. K.W., Blaese, R.M., and Oldfield. E.H., 1994c, The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats, J. Neurosurg. 81:256–260.

    PubMed  CAS  Google Scholar 

  • Reed, D.J., Lin, X., Thomas, T.D., Birks, C.W., Tang, J., and Rother, R.P., 1997, Alteration of glycosylation renders HIV sensitive to inactivation by normal human serum, J. Immunol. 159:4356–4361.

    PubMed  CAS  Google Scholar 

  • Repik, P.M., Strizki, J.M., and Galili, U., 1994, Differential host-dependent expression of α-galactosyl epitopes on viral glycoproteins: a study of eastern equine encephalitis virus as a model, J. Gen. Virol. 75:1177–1181.

    PubMed  CAS  Google Scholar 

  • Rettinger, S.D., Ponder. K.P., Saylors, R.L., Dennedy, S.C, Hafenrichter, D.G., and Flye, M.W., 1993, In vivo hepatocyte transduction with retrovirus during in-flow occlusion, J. Surg. Res. 54:418–425.

    PubMed  CAS  Google Scholar 

  • Rettinger, S.D., Kennedy, S.C., Wu, X., Saylors, R.L., Hafenrichter, D.G., Flye, M.W., and Ponder, K.P., 1994, Liver-directed gene therapy: quantitative evaluation of promoter elements by using in vivo retroviral transduction, Proc. Natl. Acad. Sci. USA 91:1460–1464.

    PubMed  CAS  Google Scholar 

  • Rollins, S.A., Birks, C.W., Setter, E., Squinto, S.P., and Rother, R.P., 1996, Retroviral vector producer cell killing in human serum is mediated by natural antibody and complement: strategies for evading the humoral immune system. Hum. Gene Ther. 7:619–626.

    PubMed  CAS  Google Scholar 

  • Rother, R.P. and Squinto, S.P., 1996, The α-galactosyl epitope: a sugar coating that makes viruses and cells unpalatable, Cell 86:185–188.

    PubMed  CAS  Google Scholar 

  • Rother, R.P., Fodor, W.L., Springhorn, J.P., Birks. C.W., Setter, E., Sandrin, M.S., Squinto, S.P., and Rollins, S.A., 1995a, A novel mechanism of retrovirus inactivation in human serum mediated by anti-αgalactosyl natural antibody, J. Exp. Med. 182:1345–1355.

    PubMed  CAS  Google Scholar 

  • Rother, R.P., Squinto, S.P., Mason, J.M., and Rollins, S.A., 1995b, Protection of retroviral vector particles in human blood through complement inhibition, Hum. Gene Ther. 6:429–435.

    PubMed  CAS  Google Scholar 

  • Russell, D.W., Berger, M.S., and Miller, A.D., 1995, The effects of human serum and cerebrospinal fluid on retroviral vectors and packaging cell lines, Hum. Gene Ther. 6:635–641.

    PubMed  CAS  Google Scholar 

  • Saifuddin, M., Parker, C.J., Peeples, M.E., Gorny. M.K., Zollα-Pazner, S., Ghassemi, M., Rooney, I.A., Atkinson, J.P., and Spear, G.T., 1995, Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1, J. Exp. Med. 182:501–509.

    PubMed  CAS  Google Scholar 

  • Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L., and McKenzie. I.F.C., 1993, Anti-pig IgM antibodies in human serum react predominantly with gal(α1–3)gal epitopes, Proc. Natl. Acad. Sci. USA 90:11391–11395.

    PubMed  CAS  Google Scholar 

  • Sandrin, M.S., Fodor, W.L., Mouhtouris, E., Osman, N., Cohney, S., Rollins, S.A., Guilmette, E.R., Setter, E., Squinto, S.P., and McKenzie. I.F.C., 1995, Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nature Med. 1:1261–1267.

    PubMed  CAS  Google Scholar 

  • Santer. U.V., DeSantis, R., Hard, K.J., van Kuik. J.A., Vliegenthart, J.F.G., Won, B., and Glick. M.C., 1989, N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae, Eur. J. Biochem. 181:249–260.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M.J. and Schlesinger. S., 1987a. Formation and assembly of alphavirus glycoproteins, in: The Togaviridae and Flaviviridae (S. Schlesinger. and M. J. Schlesinger. eds.). Plenum Press. New York. pp. 121–148.

    Google Scholar 

  • Schlesinger, M.J. and Schlesinger, S., 1987b. Domains of virus glycoproteins. Advances in Virus Research 33:1–44.

    PubMed  CAS  Google Scholar 

  • Schulze, I.T., 1970, The structure of influenza virus. I. The polypeptides of the virion, Virol. 41:890–904.

    Google Scholar 

  • Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B., and Cummings, R.D., 1990. Transfer and expression of a murine UDP-Gal:β-D-Gal-α1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells, J. Biol. Chem. 265:6225–6234.

    PubMed  CAS  Google Scholar 

  • Snyder, H.W., Jr. and Fleissner, E., 1980. Specificity of human antibodies to oncovirus glycoproteins: recognition of antigen by natural antibodies directed against carbohydrate structures. Proc. Natl. Acad. Sci. USA 77:1622–1626.

    PubMed  CAS  Google Scholar 

  • Spear, G.T., Lurain, N.S., Parker, C.J., Ghassemi. M., Payne, G.H., and Saifuddin, M., 1995. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses, J. Immunol. 155:4376–4381.

    PubMed  CAS  Google Scholar 

  • Stollar, V., Stollar, B.D., Koo, K., Harrap. K.A., and Schlesinger, W.R., 1976, Sialic acid contents of Sindbis virus from vertebrate and mosquito cells: equivalence of biological and immunological viral properties, Virol. 69:104–115.

    CAS  Google Scholar 

  • Strauss, J.H., Burge, B.W., and Darnell, J.E., 1970, Carbohydrate content of the membrane protein of Sindbis virus, J. Mol. Biol. 47:437–448.

    PubMed  CAS  Google Scholar 

  • Strauss, J.H. and Strauss, E.G., 1977, Togaviruses, in: The Molecular Biology of Animal Viruses (D.P. Nayak, ed.), Marcel Dekker, New York, pp. 111–166.

    Google Scholar 

  • Takamiya, Y., Short, M.P., Moolten, F.L., Fleet, C., Mineta, T., Breakefield, X.O., and Martuza, R.L., 1993, An experimental model of retrovirus gene therapy for malignant brain tumors, J. Neurosurg. 79:104–110.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Cosset, F.-L., Lachmann. P.J., Okada. H., Weiss. R.A., and Collins, M.K.L., 1994, Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell, J. Virol. 68:8001–8007.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Porter, C.D., Strahan, K.M., Preece. A.F., Gustafsson, K., Cosset, J.-L., Weiss, R.A., and Collins, M.K.L., 1996, Sensitization of cells and retroviruses to human serum by (α1–3) galactosyltransferase. Nature 379:85–88.

    PubMed  CAS  Google Scholar 

  • Teich, N.M., Weiss, R.A., Salahuddin. S.Z., Gallagher. R.E., Gillespie. D.H., and Gallo, R.C., 1975, Infective transmission and characterization of a C-type virus released by cultured human myeloid leukemia cells, Nature 256:551–555.

    PubMed  CAS  Google Scholar 

  • Thall, A.D., Maly, P., and Lowe, J.B., 1995. Oocyte Galα1,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270:21437–21440.

    PubMed  CAS  Google Scholar 

  • Thiry, L., Cogniaux-Le Clerc. J., Content. J., and Tack. L., 1978, Factors which influence inactivation of vesicular stomatitis virus by fresh human serum. Virol. 87:384–393.

    CAS  Google Scholar 

  • Tsichlis. P.N., 1987, Oncogenesis by Moloney murine leukemia virus. Anticancer Res. 7:171–180.

    PubMed  CAS  Google Scholar 

  • Tsichlis, P.N. and Lazo. P.A., 1991. Virus-host interactions and the pathogenesis of murine and human oncogene retroviruses. Curr. Top. Microbiol. Immunol. 171:95–171.

    PubMed  CAS  Google Scholar 

  • Vaughan, H.A., Loveland. B.E., and Sandrin. M.S., 1994. Galα( 1.3)gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies, Transplantation 58:879–882.

    PubMed  CAS  Google Scholar 

  • Welsh, R.M., Jr., 1977, Host cell modification of lymphocytic choriomeningitis virus and Newcastle disease virus altering viral inactivation by human complement, J. Immunol. 118:348–354.

    PubMed  CAS  Google Scholar 

  • Welsh, R.M., Jr., Cooper, N.R., Jensen. F.C., and Oldstone. M.B.A., 1975. Human serum lyses RNA tumour viruses. Nature 257:612–614.

    PubMed  CAS  Google Scholar 

  • Welsh, R.M., Jr., Lampert, P.W., Burner. P.A., and Oldstone. M.B.A., 1976. Antibody-complement interactions with purified lymphocytic choriomeningitis virus. Virol. 73:59–71.

    Google Scholar 

  • Welsh, R.M., Jr., O’Donnell. C.L., Reed, D.J., and Rother, R.P., 1998, Evaluation of the galα1–3gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses, J. Virol. (in press).

    Google Scholar 

  • Williams, D.A., Lemischka, I.R., Nathan, D.G., and Mulligan. R.C., 1984, Introduction of a new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:476–480.

    PubMed  CAS  Google Scholar 

  • Wood, C., Kabat, E.A., Murphy. L.A., and Goldstein, I.J., 1979, Immunochemical studies on the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198:1–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rother, R.P., Galili, U. (1999). α-Gal Epitopes on Viral Glycoproteins. In: Galili, U., Avila, J.L. (eds) α-Gal and Anti-Gal. Subcellular Biochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4771-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4771-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7160-1

  • Online ISBN: 978-1-4615-4771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics