Skip to main content

Molecular Farming of Industrial Proteins from Transgenic Maize

  • Chapter
Chemicals via Higher Plant Bioengineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 464))

Abstract

Recombinant egg white avidin and bacterial B-glucuronidase (GUS) from transgenic maize have been commercially produced. High levels of expression were obtained in seed by employing the ubiquitin promoter from maize. The recombinant proteins had activities that were indistinguishable from their native counterparts. We have illustrated that downstream activities in the production of these recombinant proteins, such as stabilizing the germplasm and processing for purification, were accomplished without any major obstacles. Avidin (A8706) and GUS (G2035) are currently marketed by Sigma Chemical Co.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W., Ryan, CA. Functional analysis of the 3’ control region of the potato wound-inducible Proteinase inhibitor II gene. Plant Cell 1989, 1, 115–122.

    PubMed  CAS  Google Scholar 

  • Austin, S., Bingham, E.T., Koegel, R.G., Mathews, D.E., Shahan, M.N., Straub, R.J., Burgess, R.R. An overview of a feasibility study for the production of industrial enzymes in trangenic alfalfa. Ann. NY Acad. Sci. 1994, 727,234–244.

    Article  Google Scholar 

  • Benfey, P.N., Chua, N-H. Regulated genes in transgenic plants. Science 1989, 244, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Brot, F.E., Bell, C.E., Sly, W.S. Purification and properties of β-glucuronidase from human placenta. Biochemistry 1978, 17,385–391.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A.M., Sharrock, R.A., Quail, P.H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992,18, 675–689.

    Article  PubMed  CAS  Google Scholar 

  • Clements, J.M., O’Connel, L.I., Tsunasawa, S., Sherman, F. Expression and activity of a gene encoding rat cyto-chrome c in the yeast Saccharomyces cerevisiae. Gene 1989, 83, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cornejo, M., Luth, D., Blankenship, K., Anderson, O., Blechl, A. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 1993, 23, 567–581.

    Article  PubMed  CAS  Google Scholar 

  • DeLange, R.J., Huang, T.S. Egg White Avidin III. Sequence of the 75-residue middle cyanogen bromide peptide. Complete amino acid sequence of the protein subunit. J. Biol.Chem. 1971, 246, 698–709.

    PubMed  CAS  Google Scholar 

  • Fisk, H.J., Dandekar, A.M. The introduction and expression of transgenes in plants. Scientia Hort. 1993, 55, 5–36.

    Article  CAS  Google Scholar 

  • Gehrmann, M.C., Opper, M., Sedlacek, H.H., Bosslet, K., Czech, J. Biochemical properties of recombinant human β-glucuronidase synthesized in baby hamster kidney cells. Biochem J. 1994, 301, 821–828.

    PubMed  CAS  Google Scholar 

  • Gope, M.L., Keinanen, R.A., Kristo, P.A., Conneely, O.M., Beattie, W.G., Zarucki-Schulz, T., O’Malley, B.W., Kulomaa, M.S.: Molecular cloning of the chicken avidin cDNA. Nuc. Acids Res. 1987, 15, 3595–3606.

    Article  CAS  Google Scholar 

  • Heney, G., Orr, G.A.. The purification of avidin and its derivatives on 2-iminobiotin-6-aminohexyl-sepharose 4B. Anal Biochem. 1981, 114, 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Hiller, Y., Gershoni, J.M., Bayer, E.A., Wilchek, M. Biotin binding to avidin. Biochem J. 1987, 248, 167–171.

    PubMed  CAS  Google Scholar 

  • Hirel, P-H., Schmitter, J-M., Dessen, P., Fayat, G., Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimat amino acid. Proc Natl. AcadSci USA, 1989, 86, 8247–8251.

    Article  CAS  Google Scholar 

  • Ho, K-J. A large scale purification of β-glucuronidase from human liver by immunoaffinity chromatography. Biotech and Appl Biochem 1991, 14, 296–305.

    CAS  Google Scholar 

  • Hood, E.E., Witcher, D.R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., Flynn, P., Register, J., Marshall, L., Bond, D., Kulisek, E., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R.J., Hernán, R., Kappel, W.K., Ritland, D., Li, C.P., Howard, LA. Commercial production of avidin from transgenic maize: Characterization of transformant, production, processing, extraction and purification. Mol. Breeding 1997, 3:291–306.

    Article  CAS  Google Scholar 

  • Holzman, D. Agracetus grows monoclonals in soybeans and corn plants. Genet. Eng. News 1994, 14(16), 1, 34.

    Google Scholar 

  • Jefferson, R.A., Burgess, S.M., Hirsch, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 1986, 83, 8447–8451.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molec Biol Rep 5, 1987, 387–405.

    Article  CAS  Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jhingan, A.K. A novel technology for DNA isolation. Methods Mol Cell Biol, 1992, 3, 15–22.

    CAS  Google Scholar 

  • Keinanen, R.A., Laukkanen, M-L., Kulomaa, M.S. Molecular cloning of three structurally related genes for chicken avidin. J. Steroid Biochem. 1988, 30, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Keinanen, RA., Wallen, M.J., Kristo, P.A., Laukkanen, M.O., Toimela, T.A., Helenius, M.A., Kulomaa, M.S. Molecular cloning and nucleotide sequence of chicken avidin-related genes 1-5. Eur. J. Biochem. 1994, 220, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Krebbers, E., Bosch, D., Vandekerckhove, J. Prospects and progress in the production of foreign proteins and pep-tides in plants. In Plant Protein Engineering Shewry, P.R., Gutteridge, S., Eds.; Cambridge University Press, pp.315–325 Cambridge, MA 1993.

    Google Scholar 

  • Kusnadi, A.R., Hood, E.E., Witcher, D.R., Howard, J.A., Nikolov, Z.L. Production and purification of two recombinant proteins from transgenic corn. Biotechnology Progress. 1998,14, 147–155.

    Article  Google Scholar 

  • Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride mem-brnes. J. Biol. Chem. 1987, 262, 10035–10038.

    PubMed  CAS  Google Scholar 

  • Nagy, F., Odell, J.T., Morelli, G., Chua, N.H. Properties of expression of the 35S promoter from CaMV in transgenic tobacco plants. In Biotechnology in plant science: relevance to agriculture in the eighties. Zaitlin, M., Day, P., Hollaender, A. Eds.; Academic Press, p. 227–235, Orlando, FL 1985.

    Google Scholar 

  • Pen, J., Verwoerd, T.C., van Paridon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, K., van der Klis, J.D., Versteegh, H.A.J., van Ooyen, A.J.J., Hoekema, A. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technol, 1993A, 11, 811–814.

    Google Scholar 

  • Pen, J., Sijmons, P.C., van Ooijen, A.J.J., Hoekema, A. Protein production in transgenic crops: Analysis of plant molecular farming. In Industrial Crops Production. Elsevier, Amsterdam, pp. 241–250 1993B.

    Google Scholar 

  • Rogers, J.C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J. Biol. Chem. 1985,250,3731–3738.

    Google Scholar 

  • Rethinaswamy, A., Yang, C-H., Srivastava, P.N. Purification and characterization of β-glucuronidase from bull seminal plasma and its role in fertilization. Mol Reprod and Dev. 1994, 38, 404–409.

    Article  CAS  Google Scholar 

  • Schmidt, J., Herfurth, E., Subramanian, A.R. Purification and characterization of seven chloroplast ribosomal proteins: Evidence that organeile ribosomal protein genes are functional and that NH2-terminal processing oc-curs via multiple pathways in chloroplasts. Plant Mol Biol. 1992, 20, 459–465.

    Article  PubMed  CAS  Google Scholar 

  • Termignoni, C., Freitas, J.O., Guimaraes, J.A. Methionyl aminopeptidase from rat liver: distribution of the membrane-bound subcellular enzyme. Mol Cell Biochem., 1991,102, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • White J., Chang, S-Y.P., Bibb, M.J., Bibb, J.M. A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nuc. Acids Res. 1990,18, 1062.

    Article  CAS  Google Scholar 

  • Whitelem, G.C., Cockburn, B., Gandecha, A.R., Owen, M.R.L. Heterologous protein production in transgenic plants. Biotechnol. Genetic Eng. Rev. 1993, 11, 1–29.

    Google Scholar 

  • Wilson, C.M. Proteins of the kernel. In Corn: chemistry and technology. Watson, S.A., Ramstad, P.E. Eds., American Association of Cereal Chemists, Inc. St. Paul, MN 1987, pp. 273–305.

    Google Scholar 

  • Witcher, D.R., Hood, E.E., Peterson, D., Bailey, M., Bond, D., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R., Kappel, W., Register, J., and Howard, J.A. Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Molecular Breeding 1998, 4, 301–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hood, E.E., Kusnadi, A., Nikolov, Z., Howard, J.A. (1999). Molecular Farming of Industrial Proteins from Transgenic Maize. In: Shahidi, F., Kolodziejczyk, P., Whitaker, J.R., Munguia, A.L., Fuller, G. (eds) Chemicals via Higher Plant Bioengineering. Advances in Experimental Medicine and Biology, vol 464. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4729-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4729-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7143-4

  • Online ISBN: 978-1-4615-4729-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics