Skip to main content

Nadh Fluorimetry to Predict Ischemic Injury in Transplant Kidneys

  • Chapter
Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

Abstract

The probability of a successful kidney transplantation decreases as the warm ischemic time in the donor prior to nephrectomy increases. Based on this statistical background a large number of potential donor kidneys, namely those that can be harvested from non-heart beating donors, is discarded. It is expected that the pool of donor organs can be considerably enlarged when an objective test will become available which can evaluate graft viability before transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahlmann J, Giebisch G, Ochwadt B, and Schoppe W (1967) Micropuncture study of isolated perfused rat kidney. Am. J. Physiol. 212:77–82.

    PubMed  CAS  Google Scholar 

  • Balaban RS (1979) The coupling of aerobic metabolism to active ion transport in the kidney (PhD dissertation), Durham, NC: Duke University.

    Google Scholar 

  • Cairns CB, Ferroggiaro AA, Walther JM, Harken AH, and Banerjee A (1997) Post-ischemic administration of succinate reverses the impairment of oxidative phosphorylation after cardiac ischemia and reperfusion injury. Circ. 96(9 Suppl.): 11-260-265.

    Google Scholar 

  • Chance B, Cohen P, Jöbsis FF, and Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Coremans JMCC, Ince C, and Bruining HA (1993) NADH fluorimetry and diffuse reflectance spectroscopy on rat heart. In: Medical Optical Tomography: Functional imaging and monitoring. (Möller G, Chance B, Alfano R, Arridge S, Beuthan J, Gratton E, Kaschke M, Masters B, Svanberg S, van der Zee P, Eds) SPIE Optical Engineering Press, Washington USA. Vol. IS 11: pp. 589–617.

    Google Scholar 

  • Coremans JMCC, Ince C, Bruining HA, and Puppels GJ (1997) (Semi-)Quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood perfused rat heart. Biophys. J. 72:1849–1860.

    Article  PubMed  CAS  Google Scholar 

  • Duboc D, Abastado P, Muffat-Joly M, Perrier P, Toussaint M, Marsac C, Francois D, Lavergne T, Pocidalo J-J, Guerin F, and Carpentier A (1990) Evidence of mitochondrial impairment during cardiac allograft rejection. Transplantation 50(5):751–755.

    PubMed  CAS  Google Scholar 

  • Ferrari R (1996) The role of mitochondria in ischemic heart disease. J. Cardiovasc. Pharmac. 28(Suppl. 1):S1–S10.

    CAS  Google Scholar 

  • Franke H, Barlow CH, and Chance B (1976) Oxygen delivery in perfused kidney: NADH fluorescence and renal functional state. Am. J. Physiol. 231(4): 1082–1089.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B and Boveris A (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim. Biophys. Acta 1243:361–366.

    Article  PubMed  Google Scholar 

  • Hardy L, Clark JB, Darley-Usmar VM, Smith DR, and Stone D (1991) Reoxygenation-dependent decrease in mitochondrial NADH:CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart. Biochem. J. 274:133–137.

    PubMed  CAS  Google Scholar 

  • Howden B, Rae D, Jablonski P, Marshall VC, and Tange J (1983) Studies of renal preservation using a rat kidney transplant model. Transplantation 35(4):311–314.

    Article  PubMed  CAS  Google Scholar 

  • Ince C, Ashruf JF, Avontuur JAM, Wieringa PA, Spaan JAE, and Bruining HA (1993) Heterogeneity of the hypoxic state in the rat heart is determined at capillary level. Am. J. Physiol. 264:H294–H301.

    PubMed  CAS  Google Scholar 

  • Kono Y, Ozawa K, Tanaka J, Ukikusa M, Takeda H, and Tobe T (1982) Significance of mitochondrial enhancement in restoring hepatic energy charge after revascularisation of isolated ischemic liver. Transplantation 33:150–155.

    Article  PubMed  CAS  Google Scholar 

  • Kootstra G, Wijnen R, Van Hooff JP, and Van der Linden CJ (1991) Twenty percent more kidneys through a Non-heart beating program. Transplant. Proc. 23:910–911.

    PubMed  CAS  Google Scholar 

  • Lennon GM, Ryan PC, Gaffney EF, and Fitzpatrick JM (1991) Changes in regional renal perfusion following ischemia/reperfusion injury to the rat kidney. Urol. Res. 19:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Mittnacht Jr S and Farber JL (1981) Reversal of ischemic mitochondrial dysfunction. J. Biol. Chem. 256:3199–3206.

    PubMed  CAS  Google Scholar 

  • Nohl H, Koltover V, and Stolze K (1993) Ischemia/reperfusion impairs mitochondrial energy conservation and triggers O2-release as a byproduct of respiration. Free Radic. Res. Commun. 18(3): 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Okamura R, Tanaka A, Uyama S, and Ozawa K (1992) Low-temperature fluoreometric technique for evaluating the viability of rat liver grafts after simple cold storage. Transplant Int. 5:165–169.

    Article  CAS  Google Scholar 

  • Rouslin W (1983) Mitochondrial complexes I, II, III, IV and V in myocardial ischemia and autolysis. Am. J. Physiol. 244:H743–H748.

    PubMed  CAS  Google Scholar 

  • Rouslin W and Ranagathan S (1983) Impaired function of mitochondrial electron transfer complex I in canine myocardial ischemia. Loss of flavin mononucleotide. J. Mol. Cell. Cardiol. 15:537–542.

    Article  PubMed  CAS  Google Scholar 

  • Saris NEL and Eriksson O (1995) Mitochondrial dysfunction in ischemia-reperfusion. Acta Anaesthesiol. Scand. 39: Supplementum 107:171–176.

    Article  CAS  Google Scholar 

  • See YP, Weisel RD, Mickle DAG, Teoh KH, Wilson GJ, Tumiati LC, Mohabeer MK, Madonik MM, Axford-Gatley RA, and Salter DR (1992) Prolonged hypothermie cardiac storage for transplantation. The effects on myocardial metabolism and mitochondrial function. J. Thorac. Cardiovasc. Surg. 104(3):817–824.

    PubMed  CAS  Google Scholar 

  • Steinlechner-Maran R, Eberl T, Kunc M, Schröcksnadel H, Margreiter R, and Gnaiger E (1997) Respiratory defect as an early event in preservation-reoxygenation injury of endothelial cells. Transplantation 63:136–142.

    Article  PubMed  CAS  Google Scholar 

  • Thorniley MS, Lane NJ, Manek S, and Green CJ (1994) Non-invasive measurement of respiratory chain dysfunction following hypothermie renal storage and transplantation. Kidney Int. 45:1489–1496.

    Article  PubMed  CAS  Google Scholar 

  • Thorniley MS, Simpkin S, Fuller B, Jenabzadeh MZ, and Green CJ (1995) Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation. Hepatology 21(6):1602–1609.

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Takenaka H, Onitsuka T, Koga Y, and Hamada M (1993) Cardioplegic effect of University of Wisconsin solution on hypothermie ischemia of rat myocardium assessed by mitochondrial oxidative phosphorylation. J. Thorac. Cardiovasc. Surg.: 106, 502–510.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coremans, J.M.C.C., van Aken, M., Bruining, H.A., Puppels, G.J. (1999). Nadh Fluorimetry to Predict Ischemic Injury in Transplant Kidneys. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics