Skip to main content

Optical Monitoring of Nadh Redox State and Blood Flow as Indicators of Brain Energy Balance

  • Chapter
Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

Abstract

Real-time evaluation of brain vitality in situ could be done by monitoring different parameters, which are complementary to each other. During the last 40 years the following four minimally invasive techniques were developed and applied to monitor the brain in situ:

  1. (1)

    Cerebral Blood Flow (CBF) using laser Doppler flowmetry (Stern et al., 1977; Dirnagl et al., 1989).

  2. (2)

    Hemoglobin oxygenation or saturation (HbO2) by dual wavelength reflectometry (Rampil et al., 1992) or spectral analysis (Frank et al., 1989).

  3. (3)

    Brain average oxygenation using oxygen electrodes (Mayevsky et al., 1980).

  4. (4)

    Mitochondrial redox state by monitoring of NADH fluorescence using surface fluorometry (Chance et al., 1962; Jobsis et al., 1971b; Mayevsky and Chance, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chance B, Cohen P, Jobsis F, and Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Chance B and Legallias V (1959) Differential microfluorometer for the localization of reduced pyridine nucleotide in living cells. The Review of Scientific Instruments 30:732–735.

    Article  CAS  Google Scholar 

  • Chance B, Legallias V, and Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature 195:1073–1075.

    Article  PubMed  CAS  Google Scholar 

  • Chance B and Thorell B (1959) Localization and kinetics of reduced pyridine nucleotide in living cells by micro-fluorometry. J. Biol. Chem. 234:3044–3050.

    PubMed  CAS  Google Scholar 

  • Chance B and Williams GR (1955) Respiratory enzymes in oxydative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217:383–393.

    PubMed  CAS  Google Scholar 

  • Dirnagl U, Kaplan B, Jacewicz M, and Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by Laser Doppler Flowmetry with a rat stroke model. J. CBF and Metab. 9:589–596.

    CAS  Google Scholar 

  • Frank KH, Kessler M, Appelbaum K, and Dummler W (1989) The Erlangen micro-lightguide spectropho-tometer EMPHO I. Phys. Med. Biol. 34:1883–1900.

    Article  PubMed  CAS  Google Scholar 

  • Haberl RL, Heizer ML, Marmarou A, and Ellis EF (1989) Laser doppler assessment of brain microcirculation: Effect of systemic alterations. Am. J. Physiol. 256:H1247–H1251.

    PubMed  CAS  Google Scholar 

  • Jobsis FF, O’Conner MJ, Rosenthal M, and VanBuren JM (1971a) Fluorometric monitoring of metabolic activity in the intact cerebral cortex. In: Anonymous Neurophysiology studied in man. Excerpta Medica, Amsterdam, pp 18–26.

    Google Scholar 

  • Jobsis FF, O’Connor M, Vitale A, and Vreman H (1971b) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Neurophysiology 34:735–749.

    PubMed  CAS  Google Scholar 

  • Mayevsky A (1983a) Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In: Baldy M, Moulinier DH, Ingvar DH, Meldrum BS (eds.) Proceedings First International Congress of Cerebral Blood Flow, Metabolism & Epilepsy. John Libbey, pp. 263-270.

    Google Scholar 

  • Mayevsky A (1983b) Multiparameter monitoring of the awake brain under hyperbaric oxygenation. J. Appl. Physiol. 54:740–748.

    PubMed  CAS  Google Scholar 

  • Mayevsky A (1984a) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7:49–68.

    Article  CAS  Google Scholar 

  • Mayevsky A (1984b) Brain oxygen toxicity. Invited Review. In: Bachrach AJ, Matzen MM (eds.) Underwater Physiology. 8th Symposium Undersea Medical Society, Bethesda, Maryland, pp. 69-89.

    Google Scholar 

  • Mayevsky A (1992) Cerebral blood flow and brain mitochondrial redox state responses to various perturbations in gerbils. In: Erdmann W (ed.) Oxygen Transport to Tissue XIV. Plenum Press, pp. 707-716.

    Google Scholar 

  • Mayevsky A and Chance B (1973) A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Adv. Exp. Med. Biol. 37A:239–244. New York Plenum Press.

    PubMed  CAS  Google Scholar 

  • Mayevsky A and Chance B (1982) Intracellular oxidation reduction state measured in situ by a multichannel fiber-optic-surface fluorometer. Science 217:537–540.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, and Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 740:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky A, Flamm ES, Pennie W, and Chance B (1991) A fiber optic based multiprobe system for intraoperative monitoring of brain functions. SPIE Proc. 1431:303–313.

    Article  Google Scholar 

  • Mayevsky A, Frank K, Muck M, Nioka S, Kessler M, and Chance B (1992) Multiparametric evaluation of brain functions in the Mongolian gerbil in vivo. J. Basic Clin. Physiol. Pharmacol. 3:323–342.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky A, Lebourdais S, and Chance B (1980) The interrelation between brain PO2 and NADH oxidation-reduction state in the gerbil. J. Neurosci. Res. 5:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky A, Meilin A, Rogatsky GG, Zarchin N, and Thorn SR (1995) Multiparametric monitoring of the awake brain exposed to carbon monoxide. J. Appl. Physiol. 78:1188–1196.

    PubMed  CAS  Google Scholar 

  • Mayevsky A, Meilin S, Manor T, Ornstein E, Zarchin N, and Sonn J (1998) Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurol. Res. 20:S76–S80.

    PubMed  Google Scholar 

  • Mayevsky A and Weiss HR (1991) Cerebral blood flow and oxygen consumption in cortical spreading depression. J. CBF and Metab. 11:829–836.

    CAS  Google Scholar 

  • Miller WC, Suich DM, and Unger KM (1987) Hyperbaric environment for chronic hypoxemia. J. Hyperbaric Med. 2:211–214.

    Google Scholar 

  • Rampil IJ, Litt L, and Mayevsky A (1992) Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. J. Clin. Monit. 8:216–225.

    Article  PubMed  CAS  Google Scholar 

  • Stern MD, Lappe DL, Bowen PD, Chimosky JE, Holoway GA, and Keiser HR (1977) Continuous measurement of tissue blood flow by Laser Doppler spectroscopy. Am. J. Physiol. 232:H441–H448.

    PubMed  CAS  Google Scholar 

  • Torbati D, Parolla D, and Lavy S (1979) Organ blood flow, cardiac output, arterial blood pressure, and vascular resistance in rats exposed to various oxygen pressures. Aviat. Space Environ. Med. 50:256–263.

    PubMed  CAS  Google Scholar 

  • Wadhwani KC and Rapoport SI (1990) Blood flow in the central and peripheral nervous systems. In: Shephard AP, Oberg PA (eds.) Laser-Doppler Blood Flowmetry. Kluwer Academic Pub., Boston, pp. 265–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayevsky, A., Meilin, S., Manor, T., Zarchin, N., Sonn, J. (1999). Optical Monitoring of Nadh Redox State and Blood Flow as Indicators of Brain Energy Balance. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics