Skip to main content

Regulation of Cerebral Oxygen Delivery

  • Chapter
Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

Abstract

Under normal conditions, it is generally accepted that for the adult mammalian cortex, almost all the energy required for cerebral ATP generation is supplied by oxidation of glucose through the tri-carboxylic acid cycle (Siesjö, 1978), and cerebral metabolic rates of oxygen and glucose use (i.e., CMRO2 and CMRglc, respectively) are regionally modified to fulfil metabolic needs through regulation of cerebral blood flow (CBF) and volume (CBV) (Roy and Sherrington, 1890). However, some positron emission tomography (PET) results have reported that during brain activation of awake humans CBF increases by a greater fraction than CMRO2 (Fox and Raichle, 1986; Fox et al., 1988). In the last few decades, ever since in vivo cortical measurements could be made of CBF and/or CMRO2, the mechanisms for the proportionality of changes between CBF and CMRO2 due to physiological perturbations have remained intangible, and the measured stoichiometries have varied reflecting a variety of experimental methods and/or conditions. However, regionally tight relationship between CMRO2 and CBF has been observed at rest with a ratio of about ~1:1 (Kety et al., 1947–8; Raichle et al., 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abounader R, Vodel J, and Kuschinsky W (1995) Patterns of capillary plasma perfusion in brains of conscious rats during normocapnia and hypercapnia. Circ Res 76:120–126.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson JLD, Anderson RE, and Sundt Jr. TM (1990) The effect of carbon dioxide on the diameter of brain capillaries. Brain Res 517:333–340.

    Article  CAS  PubMed  Google Scholar 

  • Bassingthwaighte JB (1974) A concurrent flow model for extraction during transcapillary passage. Circ Res 35:483–503.

    Article  CAS  PubMed  Google Scholar 

  • Buxton RB and Frank LR (1997) A model of the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72.

    Article  CAS  PubMed  Google Scholar 

  • Clark Jr. A, Federspiel WJ, Clark PAA, and Cokelet GR (1985) Oxygen delivery from red cells Biophys. J 47:171–181.

    Article  PubMed  Google Scholar 

  • Cox SB, Woolsey TA, and Romaines CM (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13:899–913.

    Article  CAS  PubMed  Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by the “indicator diffusion” method. Acta Physiol Scand 58:292–305.

    Article  CAS  PubMed  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, and Rosen BR (1998) Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839.

    Article  CAS  PubMed  Google Scholar 

  • Ducharme R, Kapadia P, and Dowden J (1991) A mathematical model of the flow of blood cells in fine capillaries. J Biomech 24:299–306.

    Article  CAS  PubMed  Google Scholar 

  • Federspiel WJ and Sarelius IH (1984) An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall. Mircovasc Res 27:273–285.

    Article  CAS  Google Scholar 

  • Fox PT and Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144.

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, and Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464.

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MD, Dietrich WD, and Busto R (1987) Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat: Demonstration by double-label autoradiography. Neurology 37:11–19.

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A (1997) The relation between brain function and cerebral blood flow and metabolism. In: Cerebrovascular Disease (Batjer HH, Ed) Lippincott-Raven, Philadelphia, pp. 23–40.

    Google Scholar 

  • Gjedde A (1991) Is oxygen diffusion limiting for blood-brain transfer of oxygen? In: Brain Work and Mental Activity, Alfred Benzon Symposium 31 (Lassen NA, Ingvar DH, Raichle ME, Friberg L, Eds) Munksgaard, Copenhagen, pp. 177–184.

    Google Scholar 

  • Hägerdal M, Hamp JR, Nillson L, and Siesjö BK (1975) The effect of induced hypothermia upon oxygen consumption in rat brain. J Neurochem 24:311–316.

    Article  PubMed  Google Scholar 

  • Homer LD, Weathersby PK, and Kiesow LA (1981) Oxygen gradients between red blood cells in the microcirculation. Mircovasc Res 22:232–308.

    Article  Google Scholar 

  • Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, and Shulman RG (1996) Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H-[13C] NMR. Proc Natl Acad Sci USA 93:7612–7617.

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Rothman DL, Mason GF, Rangarajan A, Behar KL, and Shulman RG (1997) Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] NMR Study. J Cereb Blood Flow Metab 17:1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Shulman RG, and Rothman DL (1998a) A model for the regulation of cerebral oxygen delivery. J Appl Physiol 85:554–564.

    CAS  PubMed  Google Scholar 

  • Hyder F, Kennan RP, Sibson NR, Mason GF, Behar KL, Rothman DL, and Shulman RG (1998b) Cerebral oxygen delivery in vivo: NMR measurements of CBF and CMRO2 at different levels of brain activity. Soc Magn Reson Med Abstr p. 1160.

    Google Scholar 

  • Kassissia IG, Goresky CA, Rose CP, Schwab AJ, Simard A, and Huet PM (1995) Tracer oxygen distribution is barrier-limited in cerebral microcirculation. Circ Res 77:1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, and Schmidt CF (1947-8) Cerebral blood flow and metabolism in schizophrenia. The effect of barbiturate semi-narcosis, insulin coma and electroshock. Amer J Psychiat 104:765–770.

    Google Scholar 

  • Kreuzer F (1982) Oxygen supply to tissues: the Krogh model and its assumptions. Experimentia 38:1415–1426.

    Article  CAS  Google Scholar 

  • Krogh A (1919) The number and the distribution of capillaries in muscles with the calculation of the oxygen pressure head necessary for supplying the tissue. J Physiol (Lond) 52:409–441.

    CAS  Google Scholar 

  • Lenigert-Follert E (1975) Direct determination of local oxygen consumption of the brain cortex in vivo. Plügers Arch 372:175–179.

    Article  Google Scholar 

  • Meier P and Zierler KL (1954) On the Theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744.

    CAS  PubMed  Google Scholar 

  • Meldrum BS and Nilsson B (1976) Cerebral blood flow and metabolic rate early and late in prolonged seizures induced in rats by bicuculline. Brain 99:523–542.

    Article  CAS  PubMed  Google Scholar 

  • Metzger H and Heuber S (1977) Local oxygen tension and spike activity of the cerebral grey matter of the rat and its response to short intervals of O2 deficiency or CO2 excess. Plügers Arch 370:201–209.

    Article  CAS  Google Scholar 

  • Moss GS, Dewoskin R, Rosen AL, Levine H, and Palani CK (1976) Transport of oxygen and carbon dioxide by hemoglobin-saline solution in the red-cell-free primate. Surg Gynecol Obstet 142:357–362.

    CAS  PubMed  Google Scholar 

  • Narain SM, Esfahani P, Blood AJ, Sikkens L, and Toga AW (1995) Functional increases in cerebral blood volume over somatosensory cortex. J Cereb Blood Flow Metab 15:754–765.

    Article  Google Scholar 

  • Nilsson B and Siesjö BK (1975) The effect of phenobarbitone anaesthesia on blood flow and oxygen consumption in the rat brain. Acta Annaesthesiol Scand Suppl 57:18–24, 1975.

    Article  CAS  Google Scholar 

  • Nilsson B and Siesjö BK (1976) A method of determining blood flow and oxygen consumption in rat brain. Acta Physiol Scand 17:273–282.

    Google Scholar 

  • Pierce Jr EC, Lambersten CL, Deutsch S, Chase PA, Linde HW, Dripps RD, and Price HL (1962) Cerebral circulation and metabolism during thiopental anaesthesia and hyperventilation in man. J Clin Invest 41:1664–1671.

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, and Gaehtgens P (1996) Relationship between structural and hemodynamic heterogeneity in micro vascular networks. Am J Physiol 270:H545–H553.

    CAS  PubMed  Google Scholar 

  • Raichle ME, Grubb RL, Gado MH, Eichling JO, and Ter-Pogossian MM (1976) Correlation between regional cerebral blood flow and oxidative metabolism. Arch Neurol 33:523–526.

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME (1987) Circulatory and metabolic correlates of brain function in normal humans. In: Handbook of Physiology. The Nervous System. Higher Functions of the Brain. Bethesda, MD: AM Physiol Soc, sect 1, vol V, pt. 2, chapt 16, pp. 633–674.

    Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscle. Am J Physiol 197:1205–1210.

    CAS  PubMed  Google Scholar 

  • Roland PE, Eriksson L, Atone-Elander S, and Widen L (1987) Does mental activity change the oxidative metabolism of the brain? J Neurosci 7:2373–2389.

    CAS  PubMed  Google Scholar 

  • Romaines CM, Woolsey TA, Blocher NC, Wang D-B, and Robinson OF (1993) Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, flourescent dextrans, non-occluding flourescent beads, and computer-assisted image analysis. J Cereb Blood Flow Metab 13:271–359.

    Google Scholar 

  • Roy CS and Sherrington CS (1890) On the regulation of the blood supply of the rat brain. J Physiol (Lond) 11:85–108.

    CAS  Google Scholar 

  • Scitz RJ and Roland PE (1992) Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol Scand 86:60–67.

    Article  Google Scholar 

  • Siesjö BK (1978) Brain Energy Metabolism. Wiley, New York.

    Google Scholar 

  • Smith AL and Wollman H (1972) Cerebral blood flow and metabolism. Anesthesiology 36:378–400.

    Article  CAS  PubMed  Google Scholar 

  • Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it: parts I-III. J Physiol (Lond) 15:1–27.

    Google Scholar 

  • Tajima A, Nakata H, Lin S-Z, Acuff V, and Fenstermacher J (1992) Differences and similarities in albumin and red blood cell flows through microvessels. Am J Physiol 262:H1515–H1524.

    CAS  PubMed  Google Scholar 

  • Ueki M, Linn F, and Hossmann K-A (1988) Functional activation of cerebral blood flow and metabolism after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494.

    Article  CAS  PubMed  Google Scholar 

  • Vetterlein F, Demmerle B, Bardosi A, Göbel U, and Schmidt G (1990) Determination of capillary perfusion pattern in rat brain by timed plasma labelling. Am J Physiol 258:H80–H84.

    CAS  PubMed  Google Scholar 

  • Villringer A, Planck J, Hock C, Schleinkofer L, and Dirnagl U (1993) A new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104.

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Them A, Lindauer U, Einhäul K, and Dirnagl U (1994) Capillary perfusion in rat brain cortex. Circ Res 75:55–62.

    Article  CAS  PubMed  Google Scholar 

  • Walley KR (1996) Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol 81:885–894.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hyder, F., Shulman, R.G., Rothman, D.L. (1999). Regulation of Cerebral Oxygen Delivery. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics