Skip to main content

U-Series Nuclides as Tracers in Groundwater Hydrology

  • Chapter
Environmental Tracers in Subsurface Hydrology

Abstract

The occurrence of the heavy radionuclides in the hydrosphere has become increasingly important in the context of today’s emphasis on the measurement of quality and quantity of water resources. The study of the natural aqueous behaviour of uranium, radium, and the shorter-lived daughters serves both as a background for radioactivity pollution studies, and also as a widely applicable method of tracing movements of the groundwater itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asikainen M. (1981) State of disequilibrium between 238U, 234U, 226Ra, and 222Rn in groundwater from bedrock. Geochim. Cosmochim. Acta 45, 201–206.

    Article  CAS  Google Scholar 

  • Briel L.I. (1976) An investigation of the 234U/238U disequilibrium in the natural waters of the Santa Fe River Basin of North Central Florida. Unpubl. PhD thesis, Florida State University.

    Google Scholar 

  • Cable J., Burnett W.C., Chanton J.P. and Weatherly G. (1996) Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth Planet. Sci. Lett. 144, 591–604.

    Article  CAS  Google Scholar 

  • Chalov P.I. (1983) Uranium disequilibrium as an indicator of processes in the hydrosphere. Water Resour. Res. 9, 466–479.

    Google Scholar 

  • Chen J.H., Edwards R.L. and Wasserberg G.J. (1986) 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett. 80, 241–257.

    Article  CAS  Google Scholar 

  • Chen J.H., Edwards R.L. and Wasserburg G.J. (1992) Mass spectrometry and applications to uranium-series disequilibrium. In Uranium Series Disequilibrium, 2nd edition, eds. M. Ivanovich and R. Harmon, pp. 174-206. Oxford Univ. Press.

    Google Scholar 

  • Cherdyntsev V.V. (1971) Uranium 234. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Cherdyntsev V.V., Chalov P.I. and Khasdarov G.Z. (1955) On isotopic composition of radioelements in natural objects, and problems of geochronology. Izv. Acad. Nauk. SSR, a75.

    Google Scholar 

  • Cohen L. (1977) A uranium disequilibrium study of the submarine springs at Spring Creek, Florida. Unpubl. MS thesis, Florida State University.

    Google Scholar 

  • Cowart J.B. and Osmond J.K. (1974) 234U and 238U in the Carrizo sandstone aquifer of south Texas. In Isotope Techniques in Groundwater Hydrology, Vol. II, pp.131–149. IAEA, Vienna.

    Google Scholar 

  • Cowart J.B. and Osmond J.K. (1977) Uranium isotopes in groundwater: their use in prospecting for sandstone-type uranium deposits. J. Geochem. Expl. 8, 365–379.

    Article  CAS  Google Scholar 

  • Cowart J.B., Kaufman M.I. and Osmond J.K. (1978) Uranium isotope variations in groundwaters of the Floridan Aquifer and Boulder Zone of South Florida. J. Hydrol. 36, 161–172.

    Article  CAS  Google Scholar 

  • Cowart J.B., Burnett W.C., Chin P.A. and Harada K. (1987) Polonium-210 in Florida wells. In Proceedings of 21st Annual Conf. on Trace Substances in Environmental Health, pp. 172-185. Univ. of Missouri Press.

    Google Scholar 

  • Dabous A.A. (1994) The geochemistry of uranium and thorium isotopes in the Western Desert of Egypt. Geochim. Cosmochim. Acta 58, 4591–4600.

    Article  CAS  Google Scholar 

  • Garrels R.M. and Mackenzie F.T. (1971) Evolution of Sedimentary Rocks, W.H. Norton, N.Y., 397 pp.

    Google Scholar 

  • Gascoyne M. (1992) Geochemistry of the actinides and their daughters. In Uranium Series Disequilibrium, 2nd edition, eds. M. Ivanovich and R. Harmon, pp.34-61. Oxford Univ. Press.

    Google Scholar 

  • Gilkeson R.H., Cartwright K., Cowart J.B. and Holtzman R.B. (1983) Hydrologic and geochemical studies of selected natural radioisotopes and barium in groundwater in Illinois. Ill. Geol. Survey Rept 1983-86. UILU-WRC-83-0180 Univ. Ill. Water Res. Center, Urbana-Champaign, IL.

    Google Scholar 

  • Green R.C. (1994) An investigation of uranium isotope distribution in selected cores from Lee County, Florida. Unpubl. MS thesis, Florida State University.

    Google Scholar 

  • Hess C.T., Michel J., Horton T.R., Prichard H.M. and Coniglio W.A. (1985) The occurrence of radioactivity in public water supplies in the U.S. Health Physics 48, 553–586.

    Article  CAS  Google Scholar 

  • Hostettler P.B. and Garrels R.M. (1962) Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type deposits. Econ. Geol. 57, 137–167.

    Article  Google Scholar 

  • Hussain N. and Krishnaswami S. (1980) U-238 series radioactive disequilibrium in groundwaters: implications to the origin of excess U-234 and fate of reactive pollutants. Geochim. Cosmochim. Acta 44, 1287–1291.

    Article  CAS  Google Scholar 

  • Ivanovich M.I., Fröhlich K. and Hendry M.J. (1991) Uranium-series radionuclides in fluids and solids from the Milk River aquifer, Alberta, Canada. Appl. Geochem. 6, 405–418.

    Article  CAS  Google Scholar 

  • Katz B.G., Coplen T.B., Bullen T.B. and Davis J.H. (1997) Use of chemical and isotopic tracers to characterize the interactions between groundwater and surface water in mantled karst. Ground Water 35, 1014–1028.

    Article  CAS  Google Scholar 

  • Kigoshi K. (1971) Alpha-recoil Thorium-234: dissolution into water and the Uranium-234/Uranium-238 disequilibrium in nature. Science 173, 47–48.

    Article  CAS  Google Scholar 

  • Kohout F. (1965) A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Floridan aquifer. Transactions of the New York Academy of Sciences 28, 249–271.

    Article  CAS  Google Scholar 

  • Kraemer T.F. and Kharaka Y.K. (1986) Uranium geochemistry in geopressured-geothermal aquifers of the U.S. Gulf Coast. Geochim. Cosmochim. Acta 50, 1233–1238.

    Article  CAS  Google Scholar 

  • Kronfeld J., Gradsztajn E., Muller H.W., Radin J., Yaniv A. and Zach R. (1975) Excess 234U: an aging effect in confined waters. Earth Planet. Sci. Lett. 27, 342–345.

    Article  CAS  Google Scholar 

  • Kuroda P.K., Damon P.E. and Hyde H.I. (1954) Radioactivity of the spring waters of Hot Springs National Park and vicinity in Arkansas. Am. J. Sci. 252, 76–86.

    Article  CAS  Google Scholar 

  • Lally A.E. (1992) Chemical Procedures. In Uranium Series Disequilibrium, 2nd edition, eds. M. Ivanovich and R.S. Harmon, pp.95-126. Oxford Univ. Press.

    Google Scholar 

  • Levine B.R. (1988) Uranium isotope survey of the groundwater system in Lee County, Florida. Unpubl. MS thesis, Florida State University.

    Google Scholar 

  • McKelvey V.E., Everhart D.L. and Garrels R.M. (1955) Origin of uranium deposits. Econ. Geol. 50, 464–528.

    Google Scholar 

  • Michel J. (1987) Sources. In Environmental Radon, eds. C.R. Cothern and J.E. Smith, Jr., pp.81–130. Plenum Press, N.Y.

    Google Scholar 

  • Miller J.A. (1986) Hydrologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina. U. S. Geological Survey Professional Paper 1403B,91pp.

    Google Scholar 

  • Osmond J.K. (1980) Uranium disequilibrium in hydrologic studies. In Handbook of Environmental Isotope Geochemistry. Vol I, The Terrestrial Environment. eds. P. Fritz and J.-C. Fontes, pp.269–282. Elsevier Press, Amsterdam.

    Google Scholar 

  • Osmond J.K. and Cowart J.B. (1974) Mixing volume calculations, sources, and aging trends of Floridan aquifer water by uranium isotopic methods. Geochim. Cosmochim. Acta 38, 1083–1100.

    Article  CAS  Google Scholar 

  • Osmond J.K., Rydell H.S. and Kaufman M.I. (1968) Uranium disequilibrium in groundwater: an isotope dilution approach in hydrologie investigations. Science 162, 997–999.

    Article  CAS  Google Scholar 

  • Osmond J.K. and Cowart J.B. (1976) Theory and use of natural uranium isotopic variations in hydrology. Atomic Energy Reviews 14, 621–667.

    CAS  Google Scholar 

  • Osmond J.K. and Cowart J.B. (1982) Ground Water. In Uranium Series Disequilibrium, eds. M. Ivanovich and R.S. Harmon, pp. 202-245. Oxford Univ. Press.

    Google Scholar 

  • Osmond J.K., Cowart J.B. and Ivanovich M. (1983) Uranium isotopic disequilibrium in groundwater as an indicator of anomalies. Int. J. Geochem. Exploration 8, 365–379.

    Google Scholar 

  • Osmond J.K. and Cowart J.B. (1992) Groundwater. In Uranium Series Disequilibrium, 2nd edition, eds. M. Ivanovich and R. Harmon, pp.290-333. Oxford Univ. Press.

    Google Scholar 

  • Pearson F.J., Norowha C.J. and Andrews R.W. (1983) Mathematical modeling of the distribution of natural 14C., 234U, and 238in a regional groundwater system. Radiocarbon 25, 291–300.

    CAS  Google Scholar 

  • Rogers J.J.W. and Actams J.A.S. (1969) Uranium. In Handbook of Geochemistry, ed. K.H. Wedepohl, pp.92B–92O. Springer-Verlag, Berlin.

    Google Scholar 

  • Rama and Moore W.S. (1984) Mechanism of transport of U-Th series radioisotopes from solids into water. Geochim. Cosmochim. Acta 48, 395–399.

    Article  CAS  Google Scholar 

  • Rosholt J.N., Harshman E.N., Shields W.R. and Garner E.L. (1963) Isotopic fractionation of uranium related to roll features in sandstone, Shirley Basin, Wyoming. Econ. Geol. 59, 570–585.

    Article  Google Scholar 

  • Sandoval D.N., Greaves E. and Melendez S. (1987) Uranium and thorium isotopic disequilibrium in Venezuelan hot springs. Geochem. J. 21, 43–49.

    Article  CAS  Google Scholar 

  • Scott R.C. and Barker F.B. (1962) Data on uranium and radium in ground water in the United States, 1954-1957. U.S. Dept of the Interior, U.S.G.S. Paper 426.

    Google Scholar 

  • Tanner A.B. (1980) Radon migration in the ground: a supplementary review. In The Natural Radiation Environment, Vol III, eds. T.F. Gesell and W.M. Lowder. U.S. Dept. of Energy Report CONF-780422, Washington, D.C.

    Google Scholar 

  • Thurber D.L. (1962) Anomalous 234U/238U in nature. J. Geophys. Res. 67, 4518–4523.

    Article  Google Scholar 

  • Zukin J.G., Hammond D.E., Ku T.-L. and Elders W.A. (1987) Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California. Geochim. Cosmochim. Acta 51, 2719–2731.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osmond, J.K., Cowart, J.B. (2000). U-Series Nuclides as Tracers in Groundwater Hydrology. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics