Skip to main content

Graph Matching and Similarity

  • Chapter
Intelligent Systems and Interfaces

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 15))

Abstract

Many graphical interfacing problems relay on graph matching. In this chapter, we explore and illustrate how graph matching can be performed using powerful,“intelligent” algorithms, to improve standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A.V., Hopcroft, J. E., and Ullman, J.D. (1974). The Design and Analysis of Computer Algorithms, Reading: Addison-Wesley.

    Google Scholar 

  • Babai, L., Grigorer, D.Y., and Mount, D.Y. (1982).“Isomorphism of graphs with bounded eigenvalue multiplicity,” Proc. of 14th ACM Symposium on Theory of Computing, pp. 310–324.

    Google Scholar 

  • Babel, L. (1995).“Isomorphism of chordal (6,3) graphs”, Computing, Vol. 54, pp. 303–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Babel, L., Ponomarenko, I.N., and Tinhofer, G. (1996).“The isomorphism problem for directed path graphs and for rooted directed path graphs,” Journal of Algorithms, Vol. 21, pp. 542–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnau, V. K. (1997). Theory and Problems of Graph Theory, McGraw-Hill.

    Google Scholar 

  • Bodlaender, H. L. (1990).“Polynomial algorithms for graph isomorphism and chromatic index on partial κ-tress”, Journal of Algorithms, Vol. 11, pp. 631–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Booth, K.S. and Lueker, G.S. (1979).“A linear-time algorithm for deciding interval graph isomorphism,” JACM, Vol. 26, pp. 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Borner, K., Pippig, E., Tammer, E., and Coulon, C. (1996).“Structural similarity and adaption,” in I. Smith and B. Faltings (Eds.): Advances in Case-based Reasoning, Lectures Notes in Computer Science, Vol. 1168, Springer, pp. 58–75.

    Google Scholar 

  • Bunke, H. (1997).“On a relation between graph edit distance and maximum common subgraph,” Pattern Recognition Letters, Vol. 18, pp. 689–694.

    Article  MathSciNet  Google Scholar 

  • Bunke, H. (1998).“Error-tolerant graph matching: a formal framework and algorithms”,in A. Amin, D. Dori, P. Pudil, and H. Freeman (Eds.): Advances in Pattern Recognition, LNCS 1451, Springer Verlag, pp. 1–14.

    Google Scholar 

  • Bunke, H.“Error correcting graph matching: On the influence of the underlying cost function,” submitted for publication.

    Google Scholar 

  • Bunke, H. and Allerman, G. (1983).“A metric on graphs for structural pattern recognition,” in H. W. Schussler (Ed.): Signal Processing II: Theories and Applications, Elsevier Science Publishers B.V. (North-Holland).

    Google Scholar 

  • Bunke, H., Jiang, X., and Kandel, A.“On the minimum common supergraph of two graphs”, submitted for publication.

    Google Scholar 

  • Bunke, H. and Shearer, K. (1998).“A graph distance metric based on maximal common subgraph,” Pattern Recognition Letters, Vol. 19, Nos. 3-4, pp. 255–259.

    Article  MATH  Google Scholar 

  • Christmas, W. J., Kittler, J., and Petrou, M. (1995).“Structural matching in computer vision using probabilistic relaxation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 17, No. 8, pp. 749–764.

    Article  Google Scholar 

  • Colbourn, G. J. (1981).“On testing isomorphism of permutation graphs,” Networks, Vol. 11, pp.13–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, D. J. and Holder, L. B. (1994).“Substructure discovery using minimum description length and background knowledge”, Journal of Artificial Intelligence Research, pp. 231–255.

    Google Scholar 

  • Cross, A., Wilson, R., and Hancock, E. (1996).“Genetic search for structural matching,” In B. Buxton, R. Cipolla (Eds.): Computer Vision — FCCV’ 96, Lecture Notes in Comp. Science 1064, Springer Verlag, pp. 514–525.

    Google Scholar 

  • Ehrig, H. (1992).“Introduction to graph grammars with applications to semantic networks,” Computers and Mathematics with Applications, Vol. 23, pp. 557–572, September.

    Article  MATH  Google Scholar 

  • Eshera, M.A. and Fu, K.S. (1984).“A graph distance measure for image analysis,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 14, No. 3, pp. 398–408.

    Article  MATH  Google Scholar 

  • Feng, J., Laumy, M., and Dhome, M. (1994).“Inexact matching using neural networks,” In E.S. Gelsema and L.N. Kanal (Eds.): Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems, pp. 177–184. North-Holland.

    Google Scholar 

  • Fisher, D.H. (1990).“Knowledge acquisition via incremental conceptual clustering,” in J. W. Shavlik and T. G. Dietterich (Eds.): Readings in Machine Learning, pp. 267–283, Morgan Kaufmann.

    Google Scholar 

  • McGregor, J. (1982).“Backtrack search algorithms and the maximal common subgraph problem,” Software-Practice and Experience, Vol. 12, pp. 23–34.

    Article  MATH  Google Scholar 

  • Hopcroft, J. E. and Tarjan, R. E. (1973).“A V log V algorithm for isomorphism of triconnected planar graphs,” Journal of Computer and System Sciences, Vol. 7, pp. 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft, J. E. and Wong, J. K. (1974).“Linear time algorithm for isomorphism of planar graphs,” Proc. of 6th Annual ACM Symposium on Theory of Computing, pp. 172–184.

    Google Scholar 

  • Jiang, X. and Bunke, H. (1998).“On the coding of ordered graphs,” Computing, Vol. 61, No.1, pp. 23–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, X. and Bunke, H. (1998).“Marked subgraph isomorphism of ordered graphs,” in A. Amin, D. Dori, P. Pudil, and H. Freeman (Eds.): Advances in Pattern Recognition, LNCS 1451, Springer Verlag, pp. 122–131, 1998.

    Google Scholar 

  • Jiang, X. and Bunke, H.“Optimal quadratic-time isomorphism of ordered graphs,” to appear in Pattern Recognition.

    Google Scholar 

  • Jiang, X., Munger, A., and Bunke, H. (1999).“Combinatorial search vs. genetic algorithms: a case study based on the mean graph problem,” to appear in Proc. of Pattern Recognition in Practice VI.

    Google Scholar 

  • Jiang, X., Munger, A., and Bunke, H.“Synthesis of representative graphical symbols by mean graph computation,” submitted for publication.

    Google Scholar 

  • Lee, S. W., Kim, J. H., and Groen, F.C.A. (1990).“Translation-rotation-and scale invariant recognition of hand-drawn symbols in schematic diagrams,” Int. Journal of Pattern Recognition and Artificial Intelligence, Vol. 4, No. 1, pp 1–15.

    Article  Google Scholar 

  • Levi, G. (1972).“A note on the derivation of maximal common subgraphs of two directed or undirected graphs,” Calcolo, Vol. 9, pp. 341–354.

    Article  MathSciNet  Google Scholar 

  • Lourens, T. (1998).“A biologically plausible model for corner-based object recognition from color images,” PhD thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Lu, S. W., Ren, Y., and Suen, C.Y. (1991).“Hierarchical attributed graph representation and recognition of handwritten Chinese characters,” Pattern Recognition, Vol. 24, pp. 617–632.

    Article  Google Scholar 

  • Luks, E.M. (1982).“Isomorphism of graphs of bounded valence can be tested in polynomial time,” Journal of Computer and System Science, Vol. 25, pp. 42–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Maher, P. (1993).“A similarity measure for conceptual graphs,” Int. Journal of Intelligent Systems, Vol. 8, pp. 819–837.

    Article  Google Scholar 

  • Messmer, B.T. (1995). “Efficient graph matching algorithms for preprocessed model graphs,” PhD thesis, University of Bern, Switzerland.

    Google Scholar 

  • Messmer, B. T. and Bunke, H. (1996).“Automatic learning and recognition of graphical symboles in engineering drawings,” in K. Tombre and R. Kasturi (Eds.): Graphics Recognition, Lecture Notes in Computer Science 1072, pp. 123–134, Springer Verlag.

    Google Scholar 

  • Messmer, B.T. and Bunke, H. (1998).“A new algorithm for error tolerant subgraph isomorphism,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 20, pp. 493–505.

    Article  Google Scholar 

  • Messmer, B.T. and Bunke, H. (1998).“Error-correcting graph isomorphism using decision trees,” Int. Journal of Pattern Recognition and Art. Intelligence, Vol. 12, No. 6, pp. 721–742.

    Article  Google Scholar 

  • Messmer, B.T. and Bunke, H. “A decision tree approach to graph and subgraph isomorphism,” to appear in Pattern Recognition.

    Google Scholar 

  • Messmer, B.T. and Bunke, H.“Efficient subgraph isomorphism detection — a decompostion approach,” to appear in IEEE Trans. on Data and Knowledge Engineering.

    Google Scholar 

  • Miller, G.L. (1980).“Isomorphism testing for graphs with bounded genus,” Proc. of 12th ACM Symposium on Theory of Computing, pp. 225–235.

    Google Scholar 

  • Nilsson, N.J. (1980). Principles of Artificial Intelligence, Tioga, Palo Alto.

    Google Scholar 

  • Poole, J. (1993).“Similarity in legal case based reasoning as degree of matching in conceptual graphs,” in M M. Richter, S. Wess, K.-D. Althoff, and F. Maurer (Eds.): Preproceedings: First European Workshop on Case-Based Reasoning, pp. 54–58.

    Google Scholar 

  • Rekers, J. and Schurr, A. (1997).“Defining and parsing visual languages with layered graph grammars,” Journal of Visual Languages and Computing, Vol. 8, pp. 27–55.

    Article  Google Scholar 

  • Rice, S., Bunke, H., and Nartker, T. (1997).“Classes of cost functions for string matching,” Algorithmica, Vol. 18, No. 2, pp. 271–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Rocha, J. and Pavlidis, T. (1994).“A shape analysis model with applications to a character recognition system,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 393–404.

    Article  Google Scholar 

  • Rodgers, P.J. and King, P.J.H. (1997).“A graph-rewriting visual language for database programming,” Journal of Visual Languages and Computing, Vol. 8, pp. 641–674.

    Article  Google Scholar 

  • Rouvray, D.H. and Balaban, A.T. (1979).“Chemical applications of graph theory,” in R.J. Wilson and L.W. Beineke (Eds.): Applications of Graph Theory, pp. 177–221, Academic Press.

    Google Scholar 

  • Sanders, K., Kettler, B., and Hendler, J. (1997). “The case for graph-structured representations,”in D. Leake and E. Plaza (Eds.): Case-Based Reasoning Research and Development, Lecture Notes in Computer Science, Vol. 1266, Springer, pp. 245–254.

    Google Scholar 

  • Sanfeliu, A. and Fu, K.S. (1983).“A distance measure between attributed relational graphs for pattern recognition,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 13, pp. 353–363.

    Article  MATH  Google Scholar 

  • Shapiro, L.G. and Haralick, R.M. (1981).“Structural descriptions and inexact matching,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 3, pp. 504–519.

    Article  Google Scholar 

  • Shearer, K.R. (1998).“Indexing and retrieval of video using spatial reasoning techniques,” PhD thesis, Curtin University of Technology, Perth, Australia.

    Google Scholar 

  • Shearer, K., Bunke, H., Venkatesh, S., and Kieronska, D. (1998).“Efficient graph matching for video indexing,” Computing, Suppl 12 (Graph Based Representations in Pattern Recognition), pp. 53–62.

    Google Scholar 

  • Shonkry, A. and Aboutabl, M. (1996).“Neural network approach for solving the maximal common subgraph problem,” IEEE Trans. on Systems, Man and Cybernetics, Vol. 26, pp. 785–790.

    Article  Google Scholar 

  • Shoubridge, P., Krarne, M., and Ray, D. (1999).“Detection of abnormal change in dynamic networks,” Proc. of IDC’99, Adelaide, pp. 557–562.

    Google Scholar 

  • Stephen, G.A. (1994). String Searching Algorithms, World Scientific, Publ. Co.

    Google Scholar 

  • Tsai, W.H. and Fu, K.S. (1979).“Error-correcting isomorphisms of attributed relational graphs for pattern recognition,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 9, pp. 757–768.

    Article  MATH  Google Scholar 

  • Ullman, J.R. (1976).“An algorithm for subgraph isomorphism,” Journal of the Association for Computing Machinery, Vol. 23, No. 1, pp. 31–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y.-K., Fan, K.-C., and Horng, J.-T. (1997).“Genetic-based search for error-correcting graph isomorphism,” IEEE Trans. on Systems, Man and Cybernetics, Vol. 27, No. 4, pp. 588–597.

    Article  Google Scholar 

  • Wang, I., Zhang, K., and Chirn, G. (1994).“The approximate graph matching problem,” Proc. of 12th Int. Conf. on Pattern Recognition, pp. 284–288, Jerusalem.

    Google Scholar 

  • Weinberg, L. (1966).“A simple and efficient algorithm for determining isomorphism of planar triply connected graphs,” IEEE Trans. on Circuit Theory, Vol. 13, No. 2, pp. 142–148.

    MathSciNet  Google Scholar 

  • Wilson, R. and Hancock, E. (1994).“Graph matching by discrete relaxation,” In E.S. Gelsema and L.N. Kanal (Eds.): Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems, pp. 165–176. North-Holland.

    Google Scholar 

  • Wong, E.K. (1990).“Three-dimensional object recognition by attributed graphs,”In H. Bunke and A. Sanfeliu (Eds.): Syntactic and Structural Pattern Recognition-Theory and Applications, pp. 381–414. World Scientific.

    Google Scholar 

  • Wong, E.K. (1992).“Model matching in robot vision by subgraph isomorphism,” Pattern Recognition, Vol. 25, No. 3, pp. 287–304.

    Article  Google Scholar 

  • Xu, L. and Oja, E. (1990).“Improved simulated annealing, Boltzmann machine, and attributed graph matching,” In L. Almeida (Ed.): Lecture Notes in Computer Science 412, pp. 151–161. Springer Verlag.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bunke, H., Jiang, X. (2000). Graph Matching and Similarity. In: Teodorescu, HN., Mlynek, D., Kandel, A., Zimmermann, HJ. (eds) Intelligent Systems and Interfaces. International Series in Intelligent Technologies, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4401-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4401-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6980-6

  • Online ISBN: 978-1-4615-4401-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics