Skip to main content

Characterization of Normal Human Breast Epithelial Cell Subpopulations Isolated by Fluorescence-Activated Cell Sorting and Their Clonogenic Growth In Vitro

  • Chapter
Methods in Mammary Gland Biology and Breast Cancer Research

Abstract

Luminal-cell-restricted, myoepithelial-cell-restricted, and mixed progenitors of the human mammary epithelium can be isolated by fluorescence-activated cell sorting of cells harvested from 3-day primary cultures of normal mammary tissue. Useful markers that allow these populations to be distinguished are MUC1, CALLA, α6 integrin, and epithelial-specific antigen. The progenitor content of the sorted cell subpopulations is detected in a 9-to 12-day colony assay in which the cells are cultured in a serum-free medium with NIH 3T3 feeders to optimize the growth of luminal and myoepithelial progenitors plated at low densities. Efficiencies of colony formation of 1–20% and colony sizes of > 100 cells are routinely observed in such cultures. The different types of colonies can be readily identified by their gross morphology and their expression of a variety of luminal- and myoepithelial-cellspecific proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

(FACS):

fluorescence-activated cell sorting

(HBEC):

human breast epithelial cells

(F12/DME/H):

Ham’s F12/Dulbecco’s modified Eagle’s medium/Hepes

(P):

penicillin

(S):

streptomycin

(BSA):

bovine serum albumin

(INS):

insulin

(HC):

hydrocortisone

(CT):

cholera toxin

(TRIS):

tris hydroxymethyl amino methane hydrochloride

(FBS):

fetal bovine serum

(FGFR):

fibroblast growth factor receptor

(HFN):

Hank’s balanced salt solution supplemented with sodium azide and FBS

(PI):

propidium iodide

(MUC1):

mammary gland mucin

(CALLA):

common acute lymphoblastic leukemia antigen

(FITC):

fluorescein isothiocyanate

(PE):

R-phycoerythrin

(ESA):

epithelial-specific antigen

(Ep-CAM):

epithelial cell adhesion molecule

(a6):

α6 integrin

(IgG):

immunoglobulin

(EGF):

epidermal growth factor

(SF medium):

serum-free medium

(HMF):

human mammary fibroblasts

(rbc):

red blood cell

(APAAP):

alkaline phosphatase anti-alkaline phosphatase

References

  1. P. S. Rudland (1991). Histochemical organization and cellular composition of ductal buds in developing human breast: Evidence of cytochemical intermediates between epithelial and myoepithelial cells. J. Histochem. Cytochem. 39:1471–1484.

    Article  PubMed  CAS  Google Scholar 

  2. P. S. Rudland, R. Barraclough, D. G. Fernig, and J. A. Smith (1997). Mammary stem cells in normal development and cancer. In C. Potten (ed.), Stem Cells, Academic Press, San Diego, CA, pp. 147–232.

    Chapter  Google Scholar 

  3. J. Stingl, C. J. Eaves, U. Kuusk, and J. T. Emerman (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63:201–213.

    Article  PubMed  CAS  Google Scholar 

  4. S. Patton, S. J. Gendler, and A. P. Spicer (1995). The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241:407–423.

    Article  PubMed  CAS  Google Scholar 

  5. J. Yang, A. Balakrishnan, S. Hamamoto, C. W. Beattie, T. K. Gupta, S. R. Wettings, and S. Nandi (1986). Different mitogenic and phenotypic responses of human breast epithelial cells grown in two versus three dimensions. Exp. Cell Res. 167:563–569.

    Article  PubMed  CAS  Google Scholar 

  6. J. T. Emerman and D. A. Wilkinson (1990). Routine culturing of normal, dysplastic and malignant human mammary epithelial cells from small tissue samples. In Vitro Cell. Dev. Biol. 26:1186–1194.

    Article  PubMed  CAS  Google Scholar 

  7. B. M. Gabelman and J. T. Emerman (1992). Effects of estrogen, epidermal growth factor, and transforming growth factor-0 on the growth of human breast epithelial cells in primary culture. Exp. Cell Res. 201:113–118.

    Article  PubMed  CAS  Google Scholar 

  8. L. Ronnov-Jessen, B. van Deurs, J. E. Celis, and O. W. Petersen (1990). Smooth muscle differentiation in cultured human breast gland stromal cells. Lab Invest. 63:532–543.

    PubMed  CAS  Google Scholar 

  9. J. J. Gomm, P. J. Browne, R. C. Coope, Q. Y. Liu, L. Buluwela, and R. C. Coombes (1995). Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immuno-magnetic separation with Dynabeads. Anal. Biochem. 226:91–99.

    Article  PubMed  CAS  Google Scholar 

  10. S. P. Ethier, M. L. Mahacek, W. J. Gullick, T. J. Frank, and B. L. Weber (1993). Differential isolation of normal luminal mammary epithelial cells and breast cancer cells from primary and metastatic sites using selective media. Cancer Res. 53:627–635.

    PubMed  CAS  Google Scholar 

  11. J. J. Gomm, R. C. Coope, P. J. Browne, and R. C. Coombes (1997). Separated human breast epithelial and myoepithelial cells have different growth factor requirements in vitro but can reconstitute normal breast lobuloavleolar structure. J. Cell Physiol. 171:11–19.

    Article  PubMed  CAS  Google Scholar 

  12. J. Russo, M. J. Mills, M. J. Moussalli, and I. H. Russo (1989). Influence of human breast development on the growth properties of primary cultures. In Vitro Cell. Dev. Biol. 25:643–649.

    Article  PubMed  CAS  Google Scholar 

  13. H. S. Smith, S. Lan, R. Ceriani, A. J. Hackett, and M. R. Stampfer (1981). Clonal proliferation of cultured nonmalignant and malignant human breast epithelia. Cancer Res. 41:4637–4643.

    PubMed  CAS  Google Scholar 

  14. B. Niranjan, L. Buluwela, J. Yant, N. Perusinghe, A. Atherton, D. Phippard, T. Dale, B. Gusterson, and T. Kalamati (1995). HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121:2897–2908.

    PubMed  CAS  Google Scholar 

  15. J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108:413–430.

    PubMed  CAS  Google Scholar 

  16. J. V. Soriano, M. S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-ßl in mammary gland ductal morphogenesis. J Mammary Gland Biol. 3:133–150.

    Article  CAS  Google Scholar 

  17. J. Taylor-Papadimitriou, M. Stampfer, J. Bartek, A. Lewis, M. Boshell, E. B. Lane, and I. M. Leigh (1989). Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: Relation to in vivo phenotypes and influence of medium. J. Cell Sci. 94:403–413.

    PubMed  Google Scholar 

  18. U. Karsten, G. Papsdorf, A. Pauly, B. Vojtesek, R. Moll, E. B. Lane, H. Clausen, P. Stosiek, and M. Kasper (1993). Subtypes of non-transformed human mammary epithelial cells cultured in vitro: histo-blood group antigen H type 2 defines basal cell-derived cells. Differentiation 54:55–66.

    PubMed  CAS  Google Scholar 

  19. W. Bocker, B. Bier, G. Freytag, B. Brommelkamp, E.-D. Jarasch, G. Edel, B. Dockhorn-Dworniczak, and K. W. Schmid (1992). An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Virchows Arch [A] 421:315–322.

    Article  CAS  Google Scholar 

  20. O. W. Petersen and B. van Deurs (1988). Growth factor control of myoepithelial cell differentiation in cultures of human mammary gland. Differentiation 39:197–215.

    Article  PubMed  CAS  Google Scholar 

  21. C.-Y. Kao, C. S. Oakley, C. W. Welsch, and C.-C. Chang (1997). Growth requirements and neoplastic transformation of two types of normal human breast epithelial cells derived from reduction mammoplasty. In Vitro Cell. Dev. Biol.-Animal 33:282–288.

    Article  CAS  Google Scholar 

  22. C.-Y. Kao, K. Nomata, C. S. Oaldey, C. W. Welsch, and C.-C. Chang (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis 16:531–538.

    Article  PubMed  CAS  Google Scholar 

  23. S. Dairkee and H. W. Heid (1993). Cytokeratin profiles of immunomagnetically separated epithelial subsets of the human mammary gland. In Vitro Cell. Dev. Biol. 29A:427–432.

    Article  CAS  Google Scholar 

  24. M. J. O’Hare, M. G. Ormerod, P. Monoghan, E. B. Lane, and B. A. Gusterson (1991). Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation 46:209–221.

    Article  PubMed  Google Scholar 

  25. C. S. Foster, P. A. W. Edwards, E. A. Dinsdale, and A. M. Neville (1982). Monoclonal antibodies to the human mammary gland. Virchows Arch. [A] 394:279–293.

    Article  CAS  Google Scholar 

  26. P. A. W. Edwards and I. M. Brooks (1984). Antigenic subsets of human breast epithelial cells distinguished by monoclonal antibodies. J. Histochem. Cytochem. 32:531–537.

    Article  PubMed  CAS  Google Scholar 

  27. J. Burchell, H. Durbin, and J. Taylor-Papadimitriou (1983). Complexity of expression of antigenic determinants recognized by monoclonal antibodies HMFG-1 and HMFG-2, in normal and malignant human mammary epithelial cells. J. Immunol. 131:508–513.

    PubMed  CAS  Google Scholar 

  28. C. Clarke, J. Titley, S. Davies, and M. J. O’Hare (1994). An immunomagnetic separation method using superparamagentic (MACS) beads for large-scale purification of human mammary luminal and myoepithelial cells. Epith. Cell Biol.3:38–46.

    CAS  Google Scholar 

  29. S. R. Dundas, M. G. Ormerod, B. A. Gusterson, and M. J. O’Hare (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J. Cell Sci. 100:459–471.

    PubMed  Google Scholar 

  30. S. V. Litvinov, M. P. Velders, H. A. M. Bakker, G. J. Fleuren, and S. O. Wamaar (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J. Cell Biol. 125:437–446.

    Article  PubMed  CAS  Google Scholar 

  31. B. Simon, D. K. Podolsky, G. Moldenhauer, K. J. Isselbacher, S. Gattoni-Celli, and S. J. Brand (1990). Epithelial glycoprotein is a member of a family of epithelial cell surface antigens homologous to nidogen, a matrix adhesion protein. Proc. Natl. Acad. Sci. U.S.A. 87:2755–2759.

    Article  PubMed  CAS  Google Scholar 

  32. U. Latza, G. Niedobitek, R. Schwarting, H. Nekarda, and H. Stein (1990). Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelia. J. Clin. Pathol. 43:213–219.

    Article  PubMed  CAS  Google Scholar 

  33. G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Laitinen, V. Quaranta, and V. E. Gould (1991). Immunohistochemical localization of integrins in the normal, hyperplastic, and neoplastic breast. Am. J. Pathol. 139:787–799.

    PubMed  CAS  Google Scholar 

  34. M. J. Smalley, J. Titley, and M. J. O’Hare (1998). Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell. Dev. Biol. Animal 34:711–721.

    Article  CAS  Google Scholar 

  35. S. H. Dairkee, C. M. Blayney-Moore, H. S. Smith, and A. J. Hackett (1986). Concurrent expression of basal and luminal markers in cultures of normal human breast analyzed using monoclonal antibodies. Differentiation 32:93–100.

    Article  PubMed  CAS  Google Scholar 

  36. J. Sloane and M. G. Ormerod (1981). Distribution of epithelial membrane antigen in normal and neoplastic tissues and its value in diagnostic tumor pathology. Cancer 47:1786–1795.

    Article  PubMed  CAS  Google Scholar 

  37. J. Bartek, J. Taylor-Papadimitriou, N. Miller, and R. Millis (1985). Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumors. Int. J. Cancer 36:299–306.

    PubMed  CAS  Google Scholar 

  38. M. E. Bailey, R. W. Brown, D. R. Mody, P. Cagle, and I. Ramzy (1996). Ber-EP4 for differentiating adenocarcinoma from reactive and neoplastic mesothelial cells in serous effusions. Comparison to carcinoembryonic antigen, B72.3 and Leu-Ml. Acta Cytol. 40:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  39. M. Delahaye, E. van der Ham, and T. H. van der Kwast (1997). Complementary value of five carcinoma markers for the diagnosis of malignant mesothelioma, adenocarcinoma metastasis, and reactive mesothelioma in serous effusions. Diag. Cytopath. 17:115–120.

    Article  CAS  Google Scholar 

  40. J. Burchell, S. Gendler, J. Taylor-Papadimitriou, A. Girling, A. Lewis, R. Mullis, and D. Lamport (1987). Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47:5476–5482.

    PubMed  CAS  Google Scholar 

  41. E X. Xing, J. Prenzoska, K. Quelch, and I. E C. McKenzie (1992). Second generation anti-MUC1 peptide monoclonal antibodies. Cancer Res. 52:2310–2317.

    PubMed  CAS  Google Scholar 

  42. M. V. Croce, A. G. Colussi, M. R. Price, and A. Segal-Eiras (1997). Expression of tumor associated antigens in normal, benign and malignant human epithelial tissue: a comparative immunohistochemical study. Anticancer Res. 17:4287–4292.

    PubMed  CAS  Google Scholar 

  43. S. Fiorentini, E. Matczak, R. C. Gallo, M. S. Reitz, I. Keydar, and B. A. Watkins (1997). Humanization of an antibody recognizing a breast cancer specific epitope by CDR-grafting. Immunotechnology 3:45–59.

    Article  PubMed  CAS  Google Scholar 

  44. S. P. Ethier (1996) Human breast cancer cell lines as models of growth regulation and disease progression. J Mammary Gland Biol. 1:111–121.

    Article  CAS  Google Scholar 

  45. O. W. Petersen, L. Ronnov-Jessen, A. R. Howlett, and M. J. Bissell (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89:9064–9068.

    Article  PubMed  CAS  Google Scholar 

  46. L. M. Bergstraesser and S. A. Weitzman (1993). Culture of normal and malignant primary human mammary epithelial cells in a physiological manner simulates in vivo growth patterns and allows discrimination of cell type. Cancer Res. 53:2644–2654.

    PubMed  CAS  Google Scholar 

  47. S. Dairkee, G. Deng, M. R. Stampfer, E M. Waldman, and H. S. Smith (1995). Selective cell culture of primary breast carcinoma. Cancer Res. 55:2516–2519.

    PubMed  CAS  Google Scholar 

  48. N. Pandis, S. Heim, G. Bardi, J. Limon, N. Mandahl, and E Mitelman (1992). Improved technique for short-term culture and cytogenetic analysis of human breast cancer. Genes Chrom. Cancer 5:14–20.

    Article  PubMed  CAS  Google Scholar 

  49. I. Brotherick, T. W. J. Lennard, S. Cook, R. Johnstone, B. Angus, M. P. Winthereik, and B. K. Shenton (1995). Use of the biotinylated antibody DAKO-ER 1D5 to measure oestrogen receptor on cytokeratin positive cells obtained from primary breast cancer cells. Cytometry 20:74–80.

    Article  PubMed  CAS  Google Scholar 

  50. H. M. Shapiro (1994). Practical Flow Cytometry. Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stingl, J., Eaves, C.J., Emerman, J.T. (2000). Characterization of Normal Human Breast Epithelial Cell Subpopulations Isolated by Fluorescence-Activated Cell Sorting and Their Clonogenic Growth In Vitro . In: Ip, M.M., Asch, B.B. (eds) Methods in Mammary Gland Biology and Breast Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4295-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4295-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6927-1

  • Online ISBN: 978-1-4615-4295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics