Skip to main content

Abstract

This chapter provides an overview of of the major types of mouse models that are used in the study of breast cancer. The major strengths and limitations with specific caveats for each type of model are provided to guide the reader in the appropriate choice of model to examine questions pertinent to breast cancer research. It is the intent of this overview to help clarify the contributions of traditional models of breast cancer and provide a rationale for the continued development of new models that more closely reflect the human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

LOH:

loss of heterozygosity

TGFα:

transforming growth factor α

TGFβ:

transforming growth factor β

4-HPR:

4-hydroxyphenylretinamide

DMBA:

dimethylbenzanthracene

PAH:

polycyclic aromatic hydrocarbons

References

  1. B. L. Slagle and J. S. Butel (1987). Exogenous and endogenous mouse mammary tumor viruses: replication and cell transformation. In D. Medina, W. Kidwell, G. Heppner, and E. Anderson (eds.), Cellular and Molecular Biology of Mammary Cancer, Plenum Press, New York, pp. 275–306.

    Chapter  Google Scholar 

  2. D. Medina (1982). Mammary tumors in mice. In H. L. Foster, J. D. Small, and J. G. Fox (eds.), The Mouse in Biomedical Research, Vol. IV, Academic Press, pp. 373–396.

    Google Scholar 

  3. R. D. Cardiff (1996). The biology of mammary transgenes: Five rules. J. Mam. Gland Biol. Neoplasia 1: 61–74.

    Article  CAS  Google Scholar 

  4. L. A. Donehower, M. Harvey, B. Slagle, M. McArthur, C. Montgomery, J. S. Butel, and A. Bradley (1992). p53-Deficient mice are developmentally normal but susceptible to tumors. Nature 356: 215–221.

    Google Scholar 

  5. R. Hakem, J. L. de la Pompa, and T. W. Mak (1998). Developmental studies of Brcal and Brca2 knock-out mice. J. Mam. Gland Biol. Neoplasia 3: 431–445.

    Article  CAS  Google Scholar 

  6. R. Nusse and H. E. Varmus (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99–109.

    Article  PubMed  CAS  Google Scholar 

  7. C. Dickson and G. Peters (1983). Mouse mammary tumor virus. Curr. Top. Microbiol. Immunol. 106: 1–34.

    Article  PubMed  CAS  Google Scholar 

  8. A. Marchetti, E Buttitta, S. Miyazaki, D. Gallahan, G. H. Smith, and R. Callahan (1995). Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol. 69: 1932–1938.

    CAS  Google Scholar 

  9. C. A. MacArthur, D. B. Shankar, and G. M. Shackleford (1995). Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J. Virol. 69: 2501–2507.

    CAS  Google Scholar 

  10. D. Medina, and H. W. Lane (1983). Stage specificity of selenium-mediated inhibition of mouse mammary tumorigenesis. Biol. Trace Element Res. 5: 297–306.

    Article  CAS  Google Scholar 

  11. E. L. Huguet, J. A. McMahon, A. P. McMahon, R. Bicknell, and A. L. Harris (1994). Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 54: 2615–2621.

    PubMed  CAS  Google Scholar 

  12. R. V. Iozzo, I. Eichstetter, and K. G. Danielson (1995). Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res. 55: 3495–3499.

    PubMed  CAS  Google Scholar 

  13. S. D. Hursting, T. J. Slaga, S. M. Fischer, J. DiGiovanni, and J. M. Phang (1999). Mechanism-based cancer prevention approaches: targets, examples, and the use of transgenic mice. J. Natl. Cancer Inst. 91: 215–225.

    Article  PubMed  CAS  Google Scholar 

  14. M. M. Fluck and S. Z. Haslam (1996). Mammary tumors induced by polyomavirus. Breast Cancer Res. Treat. 39: 45–56.

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, R. D. Cardiff, E L. Graham, J. A. Hassell, and W. J. Muller (1998). Requirement for both Shc and phosphatidylinositol 3’ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol. 18: 2344–2359.

    PubMed  CAS  Google Scholar 

  16. A. G. Liebelt and R. A. Liebelt (1967). Chemical factors in mammary tumorigenesis. In Carcinogenesis: A Broad Critique, Annual Symp. Fundamental Cancer Res., William and Wilkins, Baltimore, Maryland, pp. 315–345.

    Google Scholar 

  17. D. Medina, J. S. Butel, S. H. Socher, and E L. Miller (1980). Mammary tumorigenesis in 7,12dimethylbenzanthracene-treated C57BL x DBA/2f F1 mice. Cancer Res. 40: 368–373.

    PubMed  CAS  Google Scholar 

  18. M. Taketo, A. C. Schroeder, L. E. Mobraaten, K. B. Gunning, G. Hanten, R. R. Fox, T. H. Roderick, C. L. Stewart, E Lilly, C. T. Hansen et al. (1991). FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc. Natl. Acad. Sci. U.S.A. 88: 2065–2069.

    Article  PubMed  CAS  Google Scholar 

  19. M. E Fisher, C. J. Conti, M. Locniskar, M. A. Belury, R. E. Maldve, M. L. Lee, J. Leyton, T. J. Slaga, and D. H. Bechtel (1992). The effect of dietary fat on the rapid development of mammary tumors induced by 7,12-dimethylbenz[a]anthracene in Sencar mice. Cancer Res. 52: 662–666.

    Google Scholar 

  20. W.-G. Qing, C. J. Conti, M. LaBate, D. Johnston, T. J. Slaga, and M. C. MacLeod (1997). Induction of mammary cancer and lymphoma by multiple, low oral doses of 7,12-dimethylbenz[a]anthracene in SENCAR mice. Carcinogenesis 18: 553–559.

    Article  PubMed  CAS  Google Scholar 

  21. D. Medina and E S. Kittrell (1987). Enhancement of tumorigenicity with morphological progression in a BALB/c preneoplastic outgrowth line. J. Natl. Cancer Inst. 79: 569–576.

    PubMed  CAS  Google Scholar 

  22. R. J. Coffey, Jr., K. S. Meise, Y. Matsui, B. L. Hogan, P. J. Dempsey, and S. A. Halter (1994). Acceleration of mammary neoplasia in transforming growth factor alpha transgenic mice by 7,12-dimethylbenzanthracene. Cancer Res. 54: 1678–1683.

    PubMed  CAS  Google Scholar 

  23. B. Li, K. L. Murphy, R. Laucirica, E Kittrell, D. Medina, and J. M. Rosen (1998). A transgenic mouse model for mammary carcinogenesis. Oncogene 16: 997–1007.

    Article  PubMed  CAS  Google Scholar 

  24. D. Medina (1974). Mammary tumorigenesis in chemical carcinogen-treated mice. II: Dependence on hormone stimulation for tumorigenesis. J. Natl. Cancer Inst. 53: 223–226.

    PubMed  CAS  Google Scholar 

  25. J. W. Jull (1954). The effects of estrogens and progesterone on the chemical induction of mammary cancer in mice of the IF strain. J. Path. Bact. 68: 547–559.

    Article  PubMed  CAS  Google Scholar 

  26. S. M. Swanson, R. C. Guzman, T. Tsukamoto, T T. Huang, C. D. Dougherty, and S. Nandi (1996). N-EthylN-nitrosourea induces mammary cancers in the pituitary-isografted mouse which are histologically and genotypically distinct from those induced by N-methyl-N-nitrosourea. Cancer Lett. 102: 159–165.

    Article  PubMed  CAS  Google Scholar 

  27. R. W. Wiseman, C. Cochran, W. Dietrich, E. S. Lander, and P. Söderkuist (1994). Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human tumor-suppressor genes. Proc. Natl. Acad. Sci. U.S.A. 91: 3759–3763.

    Article  PubMed  CAS  Google Scholar 

  28. M. Chatterjee and M. R. Banerjee (1982). N-Nitrosodiethylamine-induced nodule-like alveolar lesion and its prevention by a retinoid in BALB/c mouse mammary glands in the whole organ in culture. Carcinogenesis 3: 801–804.

    Article  PubMed  CAS  Google Scholar 

  29. Q. J. Tonelli, R. P. Custer, and S. Sorof (1979). Transformation of cultured mouse mammary glands by aromatic amines and amides and their derivatives. Cancer Res. 39: 1784–1792.

    PubMed  CAS  Google Scholar 

  30. C. S. Watson, D. Medina, and J. H. Clark (1979). Characterization and estrogen stimulation of cytoplasmic progesterone receptor in the ovarian-dependent MXT-3590 mammary tumor line. Cancer Res. 39: 4098–4104.

    PubMed  CAS  Google Scholar 

  31. K. Szepeshazi, A. V. Schally, A. Nagy, G. Halmos, and K. Groot (1997). Targeted cytotoxic luteinizing hormone releasing hormone (LH-RH) analogs inhibit growth of estrogen independent MXT mouse mammary cancers in vivo by decreasing cell proliferation and inducing apoptosis. Anticancer Drugs 8: 974–987.

    Article  PubMed  CAS  Google Scholar 

  32. E Darro, P. Cahen, A. Vianna, C. Decaestecker, J. M. Nogaret, B. Leblond, C. Chaboteaux, C. Ramos, M. Petein, V. Budel, A. Schoofs, B. Pourrias, and R. Kiss (1998). Growth inhibition of human in vitro and mouse in vitro and in vivo mammary tumor models by retinoids in comparison with tamoxifen and the RU-486 anti-progestogen. Breast Cancer Res. Treat. 51: 39–55.

    Article  PubMed  CAS  Google Scholar 

  33. E. Stickeler, E Kittrell, D. Medina, and S. M. Berget (1999). Stage-specific changes in alternative splicing of CD44 and SR splicing factors in mammary tumorigenesis. Oncogene 18: 3574–3582.

    Article  PubMed  CAS  Google Scholar 

  34. D. J. Jerry, J. S. Butel, L. A. Donehower, E. J. Paulson, C. Cochran, R. W. Wiseman, and D. Medina (1994). p53 mutations occur infrequently in 7,12-dimethylbenzanthracene-induced mammary tumors in BALB/c and hemizygous p53 mice. Mol. Carcinogenesis 9: 175–183.

    Google Scholar 

  35. Y.-R. Lou, Y.-P. Lu, J.-G. Xie, P. Yen, D. Lane, and M.-T. Huang (1996). Detection of p53 and Rb proteins in DMBA-induced breast tumors of Sencar mice. Proc. Am. Assoc. Cancer Res. Abstract #691.

    Google Scholar 

  36. D. J. Jerry, M. A. Ozbun, F. S. Kittrell, D. P. Lane, D. Medina, and J. S. Butel (1993). Mutations in p53 are frequent in the preneoplastic stage of mouse mammary tumor development. Cancer Res. 53: 3374–3381.

    PubMed  CAS  Google Scholar 

  37. C. M. Aldaz, Q. Y. Liao, A. Paladugu, S. Rehm, and H. Wang (1996). Allelotypic and cytogenetic characterization of chemically induced mouse mammary tumors: high frequency of chromosome 4 loss of heterozygosity at advanced stages or progression. Mol. Carcinogenensis 17: 126–133.

    Article  CAS  Google Scholar 

  38. H. W. Lane, J. S. Butel, C. Howard, E Shepherd, R. Halligan, and D. Medina (1985). The role of high levels of dietary fat in 7,12-dirnethylbenzanthracene-induced mouse mammary tumorigenesis: Lack of an effect on lipid peroxidation. Carcinogenesis 6: 403–407.

    Article  PubMed  CAS  Google Scholar 

  39. M. T. Huang, Y. R. Lou, J. G. Xie, W. Ma, Y. P. Lu, P. Yen, B. T. Zhu, H. Newmark, and C. T. Ho (1998). Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis 19 (9): 1697–1700.

    Article  PubMed  CAS  Google Scholar 

  40. C. W. Welsch (1987). Dietary retinoids and the chemoprevention of mammary gland tumorigenesis. In D. Medina, W. Kidwell, G. Heppner, and E. Anderson (eds.), Cellular and Molecular Biology of Mammary Cancer, Plenum Press, New York, pp. 495–508.

    Chapter  Google Scholar 

  41. R. L. Ullrich, N. D. Bowles, L. C. Satterfield, and C. M. Davis (1996). Strain-dependent susceptibility to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation. Radiat. Res. 146: 353–355.

    Article  PubMed  CAS  Google Scholar 

  42. B. Ponnaiya, M. N. Cornforth, and R. L. Ullrich (1997). Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice: the difference is as clear as black and white. Radial. Res. 147: 121–125.

    Article  CAS  Google Scholar 

  43. S. P. Ethier and R. L. Ullrich (1982). Detection of ductal dysplasia in mammary outgrowths derived from carcinogen-treated virgin female BALB/c mice. Cancer Res. 42: 1753–1760.

    PubMed  CAS  Google Scholar 

  44. D. Medina, L. C. Stephens, P. J. Bonilla, C. A. Hollmann, D. Schwann, C. Kuperwasser, D. J. Jerry, J. S. Butel, and R. E. Meyn (1998). Radiation-induced tumorigenesis in preneoplastic mouse mammary glands in vivo; significance of p53 status and apoptosis. Mol. Carcinogenesis 22: 199–207.

    Article  CAS  Google Scholar 

  45. P. K. Pattengale, T. Stewart, A. Leder, E. Sinn, W. Muller, I. Tepler, E. Schmidt, and P. Leder (1989). Animal models of human disease: pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. Am. J. Pathol. 135: 39–61.

    PubMed  CAS  Google Scholar 

  46. R. D. Cardiff and S. R. Wellings (1999). The comparative pathology of human and mouse mammary glands. J. Mam. Gland Biol. Neoplasia 4: 105–122.

    Article  CAS  Google Scholar 

  47. A. S. Tsukamoto, R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55: 619–625.

    Article  PubMed  CAS  Google Scholar 

  48. B. Li, E S. Kittrell, D. Medina, and J. M. Rosen (1995). Delay of dimethylbenz(a)anthracene-induced mammary tumorigenesis in transgenic mice by apoptosis induced by an unusual mutant p53 protein. Mol. Carcinogenesis 14: 75–83.

    Article  Google Scholar 

  49. K.-U. Wagner, R. J. Wall, L. St.-Onge, P. Gruss, L. Garrett, A. Wynshaw-Boris, M. Li, P. A. Furth, and L. Hennighausen (1997). Cre mediated gene deletion in the mammary gland. Nucleic Acids. Res. 25: 4323–4330.

    Article  PubMed  CAS  Google Scholar 

  50. E Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin Dl provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630.

    Article  PubMed  CAS  Google Scholar 

  51. K. S. Korach (1994). Insights from the study of animals lacking functional estrogen receptor. Science 266: 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  52. J. P. Lydon, E J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery, Jr., G. Shyamala, O. M. Conneely, and B. W. O’Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Devel. 9: 2266–2278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medina, D. (2000). Mouse Models for Mammary Cancer. In: Ip, M.M., Asch, B.B. (eds) Methods in Mammary Gland Biology and Breast Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4295-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4295-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6927-1

  • Online ISBN: 978-1-4615-4295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics