Skip to main content

Mechanical Manipulation of Single Titin Molecules with Laser Tweezers

  • Chapter
Elastic Filaments of the Cell

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 481))

Abstract

Titin (also known as connectin) is a giant filamentous polypeptide of multi-domain construction spanning between the Z- and M-lines of the vertebrate muscle sarcomere. The molecule is significant in maintaining sarcomeric structural integrity and generating passive muscle force via its elastic properties. Here we summarize our efforts to characterize titin’s elastic properties by manipulating single molecules with force-measuring laser tweezers. The titin molecule can be described as an entropic spring in which domain unfolding occurs at high forces during stretch and refolding at low forces during release. Statistical analysis of a large number (>500) of stretch-release experiments and comparison of experimental data with the predictions of the wormlike chain theory permit the estimation of unfolded titin’s mean persistence length as 16.86 Å (±0.11 SD). The slow rates of unfolding and refolding compared with the rates of stretch and release, respectively, result in a state of non-equilibrium and the display of force hysteresis. Folding kinetics as the source of non-equilibrium is directly demonstrated here by the abolishment of force hysteresis in the presence of chemical denaturant. Experimental observations were well simulated by superimposing a simple domain folding kinetics model on the wormlike chain behavior of titin and considering the characteristics of the compliant laser trap. The original video presentation of this paper may be viewed on the web at http://www.pote.hu/ mm/prezentacio/mkpres/mkpres. htm.URL

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell GI. Models for the specific adhesion of cells to cells. Science 1978;200:618–627.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante CJ, Marko JF, Siggia ED, Smith SB. Entropic elasticity of λ-phage DNA. Science 1994;265:1599–1600.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, HP. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 1994;91:10114–8.

    Article  PubMed  CAS  Google Scholar 

  • Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J 1997;72:1541–1555.

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map often nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–72.

    Article  PubMed  Google Scholar 

  • Granzier HLM, Akster HA, ter Keurs HED. Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol1991;260:C1060–C1070.

    PubMed  CAS  Google Scholar 

  • Granzier HLM, Irving T. Passive tension in cardiac muscle: the contribution of collagen, titin, microtubules and intermediate filaments. Biophys J 1995;68:1027–1044.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Nakauchi Y, Maruyama K, Fujime S. Characterization of beta-connectin (titin 2) from striated muscle by dynamic light scattering. Biophys J 1993;65:1906–15.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Suzuki T, Kimura S, Yoshioka T, Maruyama K, Umazume Y. Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. J Muscle Res Cell Motil 1992;13:285–94.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME, Podolsky RJ. A physiological role for titin and nebulin in skeletal muscle. Nature 1986;323:160–4.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Podolsky RJ. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 1987;105:2217–23.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, et al., Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 1988;104:504–508.

    PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Granzier HLM. Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett 1996;380:281–286.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Granzier HLM. Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem Biophys Res Commun 1996b;221:491–497.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Bustamante C, Granzier HL. Complete unfolding of the titin molecule under external force. J Struct Biol 1998;122:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Kratky O, Porod G. Rec Trav Chim 1949;68:1106.

    Article  CAS  Google Scholar 

  • Kuhn W, Grün F. Kolloid Z 1942;101:248.

    Article  CAS  Google Scholar 

  • Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Marko JF, Siggia ED. Stretching DNA. Macromolecules 1995;28:8759–8770.

    Article  CAS  Google Scholar 

  • Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–345.

    PubMed  CAS  Google Scholar 

  • Rief M, Fernandez JM, Gaub HE. Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 1998a;81:4764–4767.

    Article  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997;276:1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Schemmel A, Gaub H. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J.1998b;75:3008–14.

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996;271:795–799.

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Finzi L, Bustamante C. Direct mechanical measurements of elasticity of single DNA molecules by using magnetic beads. Science 1992;258:1122–1126.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Block S. Biological applications of optical forces. Annu Rev Biophys Biomol Struct 1994;23:247–285.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J. Elastic filaments and giant proteins in muscle. Curr Opinion Cell Biol 1991;3:112–118.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J. Cytoskeleton: Titin as a scaffold and spring. Current Biology 1996;6:258–260.

    Article  PubMed  CAS  Google Scholar 

  • Trombitás K, Jin J-P, and Granzier HL. The mechanically active domain of titin in cardiac muscle. Circ Res 1995;77:856–61.

    Article  PubMed  Google Scholar 

  • Trombitás K, Pollack GH. Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 1993;14:416–22.

    Article  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997;387:308–312.

    Article  PubMed  CAS  Google Scholar 

  • Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 1996;33:123–134.

    Article  PubMed  CAS  Google Scholar 

  • Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205:263–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kellermayer, M.S.Z., Smith, S., Bustamante, C., Granzier, H.L. (2000). Mechanical Manipulation of Single Titin Molecules with Laser Tweezers. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4267-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6916-5

  • Online ISBN: 978-1-4615-4267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics