Skip to main content

Defects in the Regulation of β-Catenin in Colorectal Cancer

  • Chapter
Colon Cancer Prevention

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 470))

Abstract

The molecular events that contribute to the progression of colon cancer are beginning to unravel. An initiating and probably obligatory event is the oncogenic activation of β-catenin. This can come about by the loss of its negative regulator the adenomatous polyposis coli (APC) protein, or by mutations in the β-catenin gene that result in a more stable protein product. The interaction between APC and β-catenin, and additional proteins that affect assembly and signaling along this pathway, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzler, K.W. and Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87:159–170, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, A.J., Stern, H.S., Penner, M., Kazy, H., Mitri, A., Bapat, B.V., and Gallinger, S. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res. 54:5527–5530, 1994.

    PubMed  CAS  Google Scholar 

  3. Su, L.-K., Kinzler, K.W., Vogelstein, B., Presinger, A.C., Moser, A.P., Luongo, C., Gould, K.A., and Dove, W.F. Multiple intestinal neolasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670, 1992.

    CAS  Google Scholar 

  4. Shibata, H., Toyama, K., Shioya, H., Ito, M., Hirota, M., Hasegawa, S., Matsumoto, H., Takano, H., Akiyama, T., Toyoshima, K., Kanamaru, R., Kanegae, Y., Saito, I., Nakamura, Y., Shiba, K., and Noda, T. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278:120–123, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Peifer, M. Cell adhesion and signal transduction: The armadillo connection. Trends Cell. Biol. 5:224–229, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Gumbiner, B.M. Signal transduction of beta-catenin. Curr. Opin. Cell Biol. 7:634–640, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Miller, J.R. and Moon, R.T. Signal transduction through b-catenin and specification of cell fate during embryogenesis. Genes Dev. 10:2527–2539, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Hinck, L., Nelson, W.J., and Papkoff, J. Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing b-catenin binding to the cell adhesion protein cadherin. J. Cell Biol. 124:729–741, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Tsukamoto, A.S., Grosschedl, R., Guzman, R.C., Parslow, T., and Varmus, H.E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625, 1988.

    Article  PubMed  CAS  Google Scholar 

  10. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and Polakis, P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein Proc. Natl. Acad. Sci. USA 92:3046–3050, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and Polakis, P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57:4624–4630, 1997.

    PubMed  CAS  Google Scholar 

  12. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Yost, C., Torres, M., Miller, J.R., Huang, E., Kimelman, D., and Moon, R.T. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10:1443–1454, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., and Polakis, P. Stabilization of beta-catenin by genetic defects in melanoma cell lines, [see comments] Science 275:1790–1792, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K.W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Miyoshi, Y., Iwao, K., Nagasawa, Y., Aihara, T., Sasaki, Y., Imaoka, S., Murata, M., Shimano, T., and Nakamura, Y. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 58:2524–2527, 1998.

    PubMed  CAS  Google Scholar 

  17. Iwao, K., Nakamori, S., Kameyama, M., Imaoka, S., Kinoshita, M., Fukui, T., Ishiguro, S., Nakamura, Y., and Miyoshi, Y Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 58:1021–1026, 1998.

    PubMed  CAS  Google Scholar 

  18. de La Coste, A., Romagnolo, B., Billuart, P., Renard, C.A., Buendia, M.A., Soubrane, O., Fabre, M., Chelly, J., Beldjord, C., Kahn, A., and Perret, C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl. Acad. Sci. USA 95:8847–8851, 1998.

    Article  Google Scholar 

  19. Fukuchi, T., Sakamoto, M., Tsuda, H., Maruyama, K., Nozawa, S., and Hirohashi, S. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 58:3526–3528, 1998.

    PubMed  CAS  Google Scholar 

  20. Sparks, A.B., Morin, P.J., Vogelstein, B., and Kinzler, K.W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58:1130–1134, 1998.

    PubMed  CAS  Google Scholar 

  21. Voeller, H.J., Truica, C.I., and Gelmann, E.P. Beta-catenin mutations in human prostate cancer. Cancer Res. 58:2520–2523, 1998.

    PubMed  CAS  Google Scholar 

  22. Zurawel, R.H., Chiappa, S.A., Allen, C., and Raffel, C. Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 58:896–899, 1998.

    PubMed  CAS  Google Scholar 

  23. Molenaar, M., van de Wetering, M., Oosterwegel, M., Paterson-Maduro, J., Godsave, S., Korinek, V., Roose, I, Destree, O., and Clevers, H. Xtcf-3 transcription factor mediates b-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. [In Process Citation] Science 281:1509–1512, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, T., Izawa, I., Nagase, T., Nomura, N., Tani, H., Shoji, I., Matsuura, Y., Yonehara, S., and Kaibuchi, K. Role of IQGAP1, a target of the small GTPases Cdc42, and Racl, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281:832–835, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Hoschuetzky, H., Aberle, H., and Kemler, R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell. Biol. 127:1375–1380, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Fuchs, M., Muller, T., Lerch, M.M., and Ullrich, A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J. Biol. Chem. 271:16712–16719, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Tao, Y.S., Edwards, R.A., Tubb, B., Wang, S., Bryan, J., and McCrea, P.D. b-catenin associates with the actin-bundling protein fascin in noncadherin complex. J. Cell Biol. 134:1271–1281, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Miyoshi, Y., Nagase, H., Ando, H., Ichii, S., Nakatsura, S., Aoki, T., Miki, Y., Mori, T., and Nakamura, Y. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1:229–233, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Peifer, M., Sweeton, D., Casey, M., and Wieschaus, E. wingless and zeste-white 3 kinase trigger opposing changes in the intracellular distribution of armadillo. Development 120:369–380, 1994.

    PubMed  CAS  Google Scholar 

  32. Porfiri, E., Rubinfeld, B., Albert, I., Hovanes, K., Waterman, M., and Polakis, P. Induction of a beta-catenin-LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. Oncogene 15:2833–2839, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T.J., Perry, W.L., Lee, J.J., Tilghman, S.M., Gumbiner, B.M., and Constantini, F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Hart, M.J., de los Santos, R., Albert, I.N., Rubinfeld, B., and Polakis, P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin, and GSK3 beta. [In Process Citation] Curr. Biol. 8:573–581, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Behrens, J., Jerchow, B.A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D., and Birchmeier, W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC., and GSK3beta. Science 280:596–599, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Friedl, W., Meuschel, S., Caspari, R., Lamberti, C., Krieger, S., Sengteller, M., and Propping, P. Attenuated familial adenomatous polyposis due to a mutation in the 3′ part of the APC gene. A clue for understanding the function of the APC protein. Hum. Genet. 97:579–584, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polakis, P., Hart, M., Rubinfeld, B. (1999). Defects in the Regulation of β-Catenin in Colorectal Cancer. In: Colon Cancer Prevention. Advances in Experimental Medicine and Biology, vol 470. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4149-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4149-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6861-8

  • Online ISBN: 978-1-4615-4149-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics