Skip to main content

Avoiding Paradigm-Based Limits to Knowledge of Evolution

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 32))

Abstract

Since Darwin (1859) first proposed that evolution proceeds by natural selection, we have learned much about it. The founding of population genetic theory (summaries: Fisher, 1958; Haldane, 1932; Wright, 1931) showed the genetic feasibility of natural selection, removing a major objection to Darwin’s theory (Provine, 1971), and led to extended study of population genetic phenomena (e.g., Nei, 1987; Hartl and Clark, 1989). The “Modern Synthesis” (Jepsen et al., 1949; Mayr and Provine, 1980) brought paleontology and systematics together with population genetics to endorse Darwin’s insights and, many thought, to lay the foundation of steady progress in understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi, H., 1995, Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA, Genetics 139:1067–1076.

    PubMed  CAS  Google Scholar 

  • Akashi, H., and Schaeffer, S. W., 1997, Natural selection and the frequency distributions of “silent” DNA polymorphism in Drosophila, Genetics 146:295–307.

    PubMed  CAS  Google Scholar 

  • Antonovics, J., 1987,The evolutionary dys-synthesis: Which bottles for which wine? Am. Natur. 129:321–331.

    Google Scholar 

  • Averoff, M., and Cohen, S. M., 1997, Evolutionary origin of insect wings from ancestral gills, Nature 385:627–630.

    Google Scholar 

  • Brandon, R. N., 1990, Adaptation and Environment, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Bulmer, M., 1988, Are codon usage patterns in unicellular organisms determined by mutation-selection balance? J. Evol. Biol. 1:15–26.

    Google Scholar 

  • Cain, A. J., and Provine, W., 1992, Genes and ecology in history, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G. M. Hewitt, eds.), pp. 3–28, Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Clark, A. G., and Koehn, R. K., 1992, Enzymes and adaptation, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G. M. Hewitt, eds.), pp. 193–228, Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Crawford, D. L., and Powers, D. A., 1989, Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus, Proc. Natl Acad. Sci. USA 86:9365–9369.

    CAS  Google Scholar 

  • Darwin, C., 1859, The Origin of Species, 6th ed., rev., 1872. New American Library, New York.

    Google Scholar 

  • Dobzhansky, Th., 1973, Nothing in Biology makes sense except in the light of evolution, Amer. Biol. Teacher 35:125–129.

    Google Scholar 

  • Eanes, W. F., 1999, Analysis of selection on enzyme polymorphisms. Annu. Rev. Ecol. Syst. 30:301–326.

    Google Scholar 

  • Endler, J. A., 1986, Natural Selection in the Wild, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Ewens, W., and Feldman, M. W., 1976, The theoretical assessment of selective neutrality, in: Population Genetics and Ecology (S. Karlin and E. Nevo, eds.), pp. 303–337, Academic Press, New York.

    Google Scholar 

  • Feder, M. E., and Watt, W. B., 1992, Functional Biology of adaptation, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G M. Hewitt, eds.), pp. 365–392, Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Feder, M. E., Blair, N., and Figueras, H., 1997, Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae, Funct. Ecol. 11:90–100.

    Google Scholar 

  • Felsenstein, J., 1985, Phylogenies and the comparative method, Am. Natur. 125:1–15.

    Google Scholar 

  • Fisher, R. A., 1958, The Genetical Theory of Natural Selection, 2nd ed., rev., Dover, New York.

    Google Scholar 

  • Gershwin, I., 1935, Libretto to George Gershwin, Porgy and Bess.

    Google Scholar 

  • Gillespie, J. H., 1991, The Causes of Molecular Evolution, Oxford University Press, Oxford, England.

    Google Scholar 

  • Gillespie, J. H., 1994, Substitution processes in molecular evolution, II. Exchangeable models from population genetics, Evolution 48:1101–1113.

    Google Scholar 

  • Golding, G. B. (ed.), 1994, Non-neutral Evolution, Chapman & Hall, New York.

    Google Scholar 

  • Golding, G. B., and Dean, A. M., 1998, The structural basis of molecular adaptation, Mol. Biol. Evol. 15:355–369.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., 1980a, Is a new and general theory of evolution emerging? Paleobiology 6:119–130.

    Google Scholar 

  • Gould, S. J., 1980b, The evolutionary Biology of constraint, Daedalus 109:39–52.

    Google Scholar 

  • Gould, S. J., 1989, A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution, Evolution 43:516–539.

    Google Scholar 

  • Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm, Proc. Roy. Soc. Lond. B 205:581–598.

    CAS  Google Scholar 

  • Gould, S. J., and Vrba, E. S., 1982, Exaptation—A missing term in the science of form, Paleobiology 8:4–15.

    Google Scholar 

  • Haldane, J. B. S., 1932, The Causes of Evolution, Longmans, London.

    Google Scholar 

  • Hartl, D. L., and Clark, A. C., 1989, Principles of Population Genetics, 2nd ed., Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Harvey, P. H., and Pagel, M. D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford, England.

    Google Scholar 

  • Hennig, W., 1966, Phylogenetic Systematics, University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Hickman, C. S., 1988, Analysis of form and function in fossils, Am. Zool. 28:775–793.

    Google Scholar 

  • Hillis, D. M., Moritz, C., and Mable, B. K. (eds.), 1996, Molecular Systematics, 2nd ed., Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Jacobs, M. D., and Watt, W. B., 1994, Seasonal adaptation vs physiological constraint: Photoperiod, thermoregulation, and flight in Colias butterflies, Func. Ecol. 8:366–376.

    Google Scholar 

  • Jepsen, G. L., Simpson, G. G., and Mayr, E. (eds.), 1949, Genetics, Palaeontology, and Evolution, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Judson, H. F., 1996, The Eighth Day of Creation, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Kacser, H., and Burns, J. A., 1979, Molecular democracy: Who shares the controls? Biochem. Soc. Trans. 7:1149–1160.

    PubMed  CAS  Google Scholar 

  • Kacser, H., and Burns, J. A., 1981, The molecular basis of dominance, Genetics 97:639–666.

    PubMed  CAS  Google Scholar 

  • Karlin, S., and Feldman, M. W., 1970, Linkage and selection: Two-locus symmetric viability model, Theor. Pop. Biol. 1:39–71.

    CAS  Google Scholar 

  • Kettlewell, H. B. D., 1955, Selection experiments on industrial melanism in the Lepidoptera, Heredity 9:323–342.

    Google Scholar 

  • Kingsolver, J. G., and Watt, W. B., 1984, Mechanistic constraints and optimality models: Thermoregulatory strategies in Colias butterflies, Ecology 65:1835–1839.

    Google Scholar 

  • Krebs, R. A., and Feder, M. E., 1997, Natural variation in the expression of the heat-shock protein hsp70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress, Evolution 50:173–179.

    Google Scholar 

  • Kuhn, T. S., 1970, The Structure of Scientific Revolutions, 2nd ed., University of Chicago Press, Chicago.

    Google Scholar 

  • Lande, R., 1983, The response to selection on major and minor mutations affecting a metrical trait, Heredity 50:47–65.

    Google Scholar 

  • Lande, R., and Arnold, S. J., 1983, The measurement of selection on correlated characters, Evolution 37:1210–1226.

    Google Scholar 

  • Lenski, R. E., and Travisano, M., 1994, Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. USA 91:6808–6814.

    PubMed  CAS  Google Scholar 

  • Lerner, I. M., 1954, Genetic Homeostasis, Oliver & Boyd, Edinburgh, England.

    Google Scholar 

  • Levins, R., 1965, Genetic consequences of natural selection, in: Theoretical and Mathematical Biology (T. H. Waterman and H. J. Morowitz, eds.), pp. 371–387, Blaisdell, New York.

    Google Scholar 

  • Lloyd, E. A., 1994, The Structure and Confirmation of Evolutionary Theory, 2nd ed., Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Losos, J. B., Jackmann, T. R., Larson, A., de Queiroz, K., and Rodriguez-Schettino, L., 1998, Contingency and determinism in replicated adaptive radiations of island lizards, Science 279:2115–2118.

    PubMed  CAS  Google Scholar 

  • MacArthur, R. H., 1965, Ecological consequences of natural selection, in: Theoretical and Mathematical Biology (T H. Waterman and H. J. Morowitz, eds.), pp. 388–397, Blaisdell, New York.

    Google Scholar 

  • Mackay, T. F. C., 1995, The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system, Trends Genet. 11:464–470.

    PubMed  CAS  Google Scholar 

  • Mayr, E., 1958, Change of genetic environment and evolution, in: Evolution as a Process (J. Huxley, A. C. Hardy, and E. B. Ford, eds.), 2nd ed., pp. 188–213, Allen & Unwin, London.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Mayr, E., 1980, Some thoughts on the history of the evolutionary synthesis, in: The Evolutionary Synthesis (E. Mayr and W. B. Provine, eds.), pp. 1–48, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Mayr, E., 1988, Toward a New Philosophy of Biology, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Mayr, E., and Ashlock, P. D., 1969, Principles of Systematic Zoology, 2nd ed., McGraw-Hill, New York, New York.

    Google Scholar 

  • Mayr, E., and Provine, W. B. (eds.), 1980, The Evolutionary Synthesis, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Michener, C. D., and Sokal, R. R., 1957, A quantitative approach to a problem in classification, Evolution 11:130–162.

    Google Scholar 

  • Milkman, R. D., 1961, The genetic basis of natural variation. III. Developmental lability and evolutionary potential, Genetics 46:25–38.

    PubMed  CAS  Google Scholar 

  • Milkman, R. D., 1965, The genetic basis of natural variation. VII. The individuality of polygenic combinations in Drosophila, Genetics 52:789–799.

    PubMed  CAS  Google Scholar 

  • Mitton, J. B., 1997, Selection in Natural Populations, Oxford University Press, New York.

    Google Scholar 

  • Mongold, J. A., and Lenski, R. E., 1996, Experimental rejection of a nonadaptive explanation for increased cell size in Escherichia coli, J. Bact. 178:5333–5334.

    PubMed  CAS  Google Scholar 

  • Monod, J., Changeux, J.-P., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol Biol. 6:306–309.

    PubMed  CAS  Google Scholar 

  • Morowitz, H. J., 1978, Foundations of Bioenergetics, Academic Press, New York.

    Google Scholar 

  • Nei, M., 1987, Molecular Evolutionary Genetics, Columbia University Press, New York.

    Google Scholar 

  • Nielsen, M. G., and Watt, W. B., 1998, Behavioral fitness components in the “alba” polymorphism of Colias (Lepidoptera, Pieridae): Adult time budget analysis, Func. Ecol. 12:149–158.

    Google Scholar 

  • O’Donald, P., 1971, Natural selection for quantitative characters, Heredity 27:137–153.

    PubMed  Google Scholar 

  • Orr, H. A., and Coyne, J. A., 1992, The genetics of adaptation: a reassessment, Am. Natur. 140:725–742.

    PubMed  CAS  Google Scholar 

  • Osborne, K. A., Robichon, A., Burgess, E., Butland, S., Shaw, R. A., Coulthard, A., Pereira, H. S., Greenspan, R. J., and Sokolowski, M. B., 1997, Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila, Science 277:834–836.

    PubMed  CAS  Google Scholar 

  • Parker, G. A., and Maynard Smith, J., 1990, Optimality theory in evolutionary Biology, Nature 348:27–33.

    Google Scholar 

  • Perkins, D. D., and Turner, B. C., 1988, Neurospora from natural populations: Toward the population Biology of a haploid eukaryote, Exp. Mycol. 12:91–131.

    Google Scholar 

  • Piatt, J. R., 1964, Strong inference, Science 146:347–353.

    Google Scholar 

  • Popper, K. R., 1994, The Myth of the Framework, Routledge, London.

    Google Scholar 

  • Powell, J. R., 1997, Progress and Prospects in Evolutionary Biology: The Drosophila Model, Oxford University Press, Oxford, England.

    Google Scholar 

  • Powers, D. A., Lauerman, T., Crawford, D., and DiMichele, L., 1991, Genetic mechanisms for adapting to a changing environment, Annu. Rev. Genet. 25:629–659.

    PubMed  CAS  Google Scholar 

  • Provine, W. B., 1971, The Origins of Theoretical Population Genetics, University of Chicago Press, Chicago.

    Google Scholar 

  • Quastler, H., 1964, The Emergence of biological Organization, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Quastler, H., 1965, General principles of systems analysis, in: Theoretical and Mathematical Biology (T. H. Waterman and H. J. Morowitz, eds.), pp. 313–333, Blaisdell, New York.

    Google Scholar 

  • Real, L. A. (ed.), 1994, Ecological Genetics, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Reeve, H. K., and Sherman, P. W., 1993, Adaptation and the goals of evolutionary research, Q. Rev. Biol. 68:1–32.

    Google Scholar 

  • Ridley, M., 1986, Evolution and Classification, Longman’s, Harlow, England.

    Google Scholar 

  • Robertson, A., 1968, The spectrum of genetic variation, in: Population Biology and Evolution (R. C. Lewontin, ed.), pp. 5–16, Syracuse University Press, Syracuse, New York.

    Google Scholar 

  • Rose, M. R., and Lauder, G. V. (eds.), 1996a, Adaptation, Academic Press, New York.

    Google Scholar 

  • Rose, M. R., and Lauder, G. V., 1996b, Post-spandrel adaptationism, in: Adaptation (M. R. Rose and G. V. Lauder, eds.), pp. 1–8, Academic Press, New York.

    Google Scholar 

  • Rothman, E., and Templeton, A. M., 1980, A class of models of selectively neutral alleles, Theor. Pop. Biol. 18:135–150.

    Google Scholar 

  • Savageau, M. A., and Sorribas, A., 1989, Constraints among molecular and systemic properties: implications for physiological genetics, J. Theor. Biol. 141:93–115.

    PubMed  CAS  Google Scholar 

  • Simpson, G. G., 1949, The Meaning of Evolution, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Skibinski, D. O. R, Woodwark, M., and Ward, R. D., 1993, A quantitative test of the neutral theory using pooled allozyme data, Genetics 135:233–248.

    PubMed  CAS  Google Scholar 

  • Suppe, F., 1977, Afterword, in: The Structure of Scientific Theories (F. Suppe, ed.), pp. 617–730, University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Travis, G. D. L., and Collins, H. M., 1991, New light on old boys: Cognitive and institutional particularism in the peer review system, Sci. Tech. Hum. Values 16:322–341.

    Google Scholar 

  • Travisano, M., and Lenski, R. E., 1996, Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation, Genetics 143:15–26.

    PubMed  CAS  Google Scholar 

  • Tuomi, J., 1981, Structure and dynamics of Darwinian evolutionary theory, Syst. Zool. 30:22–31.

    Google Scholar 

  • Wagner, G. P., and Altenberg, L., 1996, Complex adaptations and the evolution of evolvability, Evolution 50:967–976.

    Google Scholar 

  • Watt, W B., 1968, Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation, Evolution 22:437–458.

    Google Scholar 

  • Watt, W. B., 1985a, Bioenergetics and evolutionary genetics—Opportunities for new synthesis, Am. Natur. 125:118–143.

    CAS  Google Scholar 

  • Watt, W. B., 1985b, Allelic isozymes and the mechanistic study of evolution, Isozymes: Curr. Top. Biol. Med. Res. 12:89–132.

    CAS  Google Scholar 

  • Watt, W. B., 1986, Power and efficiency as fitness indices in metabolic organization, Am. Natur. 127:629–653.

    CAS  Google Scholar 

  • Watt, W. B., 1992, Eggs, enzymes, and evolution—Natural genetic variants change insect fecundity, Proc. Natl. Acad. Sci. USA 89:10608–10612.

    PubMed  CAS  Google Scholar 

  • Watt, W. B., 1994, Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics 136:11–16.

    PubMed  CAS  Google Scholar 

  • Watt, W B., 1995, Allozymes in evolutionary genetics: beyond the twin pitfalls of “neutralism” and “selectionism,” Rev. Suisse de Zoologie 102:869–882.

    Google Scholar 

  • Watt, W. B., Carter, P. A., and Blower, S. M., 1985, Adaptation at specific loci. IV Differential mating success among glycolytic allozyme genotypes of Colias butterflies, Genetics 109:157–175.

    PubMed  CAS  Google Scholar 

  • West, G. B., Brown, J. H., and Enquist, B. J., 1997, A general model for the origin of allometric scaling laws in Biology, Science 276:122–126.

    PubMed  CAS  Google Scholar 

  • Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Whorf, B. L., 1956, Language, Thought, and Reality (X B. Carroll, ed.), MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Wright, S., 1931, Evolution in Mendelian populations, Genetics 6:97–159.

    Google Scholar 

  • Wright, S., 1934, Physiological and evolutionary theories of dominance, Am. Natur. 34:24–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watt, W.B. (2000). Avoiding Paradigm-Based Limits to Knowledge of Evolution. In: Clegg, M.T., Hecht, M.K., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4135-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4135-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6854-0

  • Online ISBN: 978-1-4615-4135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics