Skip to main content

Carbohydrate Fermentation, Energy Transduction and Gas Metabolism in the Human Large Intestine

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

The principal sources of carbon and energy for bacteria growing in the human large intestine are resistant starches, plant cell wall polysaccharides, and host mucopolysaccharides, together with various proteins, peptides, and other lower-molecular-weight carbohydrates that escape digestion and absorption in the small bowel (Cummings and Macfarlane 1991, Macfarlane and Cummings 1991). These complex polymers are degraded by a wide range of bacterial polysaccharidases, glycosidases, proteases, and peptidases to smaller oligomers and their component sugars and amino acids. Intestinal bacteria are then able to ferment these substances to short chain fatty acids (SCFAs), hydroxy and dicarboxylic organic acids, H2, CO2, and other neutral, acidic, and basic end products. Carbohydrate metabolism is quantitatively more important than amino acid fermentation in the human large intestine, particularly in the proximal colon, where substrate availability is greatest. The hydrolysis and metabolism of carbohydrates in the large intestine are influenced by a variety of physical, chemical, biological, and environmental factors, some of which are shown in Table 9.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison C, Macfarlane GT (1988) Effect of nitrate on methane production by slurries of human faecal bacteria. J Gen Microbiol 134: 1397–1405.

    PubMed  CAS  Google Scholar 

  • Allison C, Macfarlane GT (1989a) Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microbiol 55: 2894–2898.

    PubMed  CAS  Google Scholar 

  • Allison C, Macfarlane GT (1989b) Dissimilatory nitrate reduction by Propionibacterium acnes. Appl Environ Microbiol 55: 2899–2903.

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Scaupp A, Neurater C, Brown A, Ljungdahl LG (1973) Fermentation of glucose fructose, and xylose by Clostridium thermoaceticum: effects of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol 114: 743–751.

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton NP, Clarke DJ, eds. Clostridia, Biotechnology Handbooks 3, pp. 27–62. New York: Plenum Press.

    Google Scholar 

  • Archer DB, Harris JE (1986) Methanogenic bacteria and methane production in various habitats. In: Barnes EM, Mead GC, eds. Anaerobic Bacteria in Habitats Other Than Man, pp. 185–223. Oxford: Blackwell Scientific.

    Google Scholar 

  • Bader J, Simon H (1983) ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes. FEMS Microbiol Lett 20: 171–175.

    Article  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CL, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296.

    PubMed  CAS  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Beeken W, Northwood I, Beliveau C, Gump D (1987) Phagocytes in cell suspensions of human colonic mucosa. Gut 28: 976–980.

    Article  PubMed  CAS  Google Scholar 

  • Bell GR, LeGall J, Peck HD (1974) Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J Bacteriol 120: 994–997.

    PubMed  CAS  Google Scholar 

  • Bezkorovainy A (1989) Nutrition and metabolism of bifidobacteria. In: Bezkorovainy A, Miller-Catchpole R, eds. Biochemistry and Physiology of Bifidobacteria. Boca Raton, Fla.: CRC Press

    Google Scholar 

  • Biesterveld S, Zehnder AJB, Stams AJM (1994) Regulation of product formation in Bacteroides xylanolyticus X5-1 by interspecies electron transfer. Appl Environ Microbiol 60: 1347–1352.

    PubMed  CAS  Google Scholar 

  • Blaut M, Muller V, Gottschalk G (1990) Energetics of methanogens. In: Krulwich TA, ed. Bacterial Energetics, pp. 505–537. London: Academic Press.

    Google Scholar 

  • Bond JH, Engel RR, Levitt MD (1971) Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 133: 572–588.

    Article  PubMed  CAS  Google Scholar 

  • Booth IR (1988) Bacterial transport: energetics and mechanisms. In: Anthony C, ed. Bacterial Energy Transduction, pp. 377–429. London: Academic Press.

    Google Scholar 

  • Booth IR, Mitchell WJ (1987) Sugar transport and metabolism in clostridia. In: Reizer J, Peterkofsky A, eds. Sugar Transport and Metabolism in Gram-Positive Bacteria, pp. 165–185. Chichester: EllisHorwood.

    Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 and CO2 by termite gut microbes. Appl Environ Microbiol 52: 623–630.

    PubMed  CAS  Google Scholar 

  • Bronder M, Mell H, Stupperich E, Kroger A (1982) Biosynthetic pathways of Vibrio succinogenes with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131: 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Caspari D, Macy JM (1983) The role of carbon dioxide in glucose metabolism of Bacteroides fragilis. Arch Microbiol 135: 16–24.

    Article  PubMed  CAS  Google Scholar 

  • Chassey BM, Thompson J (1983) Regulation of lactase-phosphoenol-pyruvate dependent phosphotransferase system and ß-D-phosphogalactoside and galactohydrolase activities in Lactobacillus casei. J Bacteriol 154: 1195–1203.

    Google Scholar 

  • Christi SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Quantitative measurement of hydrogen and methane from fermentation using a whole body calorimeter. Gastroenterology 102: 1269–1277.

    Google Scholar 

  • Coleman GS (1960) A sulfate reducing bacterium from the sheep rumen. J Gen Microbiol 22: 423–436.

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lakesediments. Appl Environ Microbiol 50: 595–601.

    PubMed  CAS  Google Scholar 

  • Cord-Ruwisch R, Sietz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149: 295–299.

    Article  Google Scholar 

  • Cummings JH (1995) Short chain fatty acids. In: Gibson GR, Macfarlane GT, eds. Human Colonic Bacteria: Role in Nutrition, Physiology and Health, pp. 101–130. Boca Raton: CRC Press.

    Google Scholar 

  • Cummings JH, Gibson GR, Macfarlane GT (1989) Quantitative estimates of fermentation in the hindgut of man. In: Skadhauge E, Norgaard P, eds. Proceedings of the International Symposium on Comparative Aspects of the Physiology of Digestion in Ruminant and Hindgut Fermenters. Acta Vet Scand Suppl 86: 76–82.

    Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70: 443–459.

    Article  PubMed  CAS  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CPE, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  • Cummins CS, Johnson JL (1992) The genus Propionibacterium. In: Balows A, Truper HG, Dworkin M, Harder W, Schliefer KH, eds. The Prokaryotes, 2nd Ed. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 834–849. New York: Springer-Verlag.

    Google Scholar 

  • Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152: 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Degnan BA (1992) Transport and Metabolism of Carbohydrates by Anaerobic Gut Bacteria. Ph.D. thesis, University of Cambridge.

    Google Scholar 

  • Degnan BA, Macfarlane GT (1991) Comparison of carbohydrate substrate preferences in eight species of bifidobacteria. FEMS Microbiol Letts 84: 151–156.

    Article  CAS  Google Scholar 

  • Degnan BA, Macfarlane GT (1993) Transport and metabolism of glucose and arabinose in Bifidobacterium breve. Arch Microbiol 160: 144–151.

    Article  PubMed  CAS  Google Scholar 

  • Degnan BA, Macfarlane GT (1994) Effect of dilution rate and carbon availability on Bifidobacterium breve fermentation. Appl Microbiol Biotechnol 40: 800–805.

    Article  CAS  Google Scholar 

  • Demeyer DI, DeGraeve K (1991) Differences of stoichiometry between rumen and hindgut fermentation. Adv Animal Physiol Nutr 22: 50–61.

    Google Scholar 

  • DeVries W, Stouthamer, AH (1968) Fermentation of glucose, lactose, galactose, mannitoland xylose by bifidobacteria. J Bacteriol 96: 472–478.

    CAS  Google Scholar 

  • DeVries W, Gerbrandy SJ, Stouthamer, AH (1967) Carbohydrate metabolism in Bifidobacterium bifidum. Biochim Biophys Acta 136: 415–425.

    Article  CAS  Google Scholar 

  • DeVries W, Kapteijn WMC, Van der Beek EG, Stouthamer AH (1970) Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol 63: 333–345.

    Article  CAS  Google Scholar 

  • Diekert G (1992) The acetogenic bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd Edn. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 517–533. New York: Springer-Verlag.

    Google Scholar 

  • Dills SS, Apperson A, Schmidt MR, Saier MH (1980) Carbohydrate transport in bacteria. Microbiol Rev 44: 385–418.

    PubMed  CAS  Google Scholar 

  • Dore J, Rieu-Lesme F, Fonty G, Gouet P (1992) Preliminary study of non-methanogenic hydrogenotrophic microflora in the rumen of new-born lambs. Ann Zootech 41: 82.

    Article  Google Scholar 

  • Driessen AJM, Konings WN (1990) Energetic problems of bacterial fermentations: Extrusion of metabolic products. In: Krulwich TA, ed. Bacterial Energetics, pp. 449–478. London: Academic Press.

    Google Scholar 

  • Duncan AJ, Henderson C (1990) A study of the fermentation of dietary fibre by human colonic bacteria grown in vitro in semi-continuous culture. Microbial Ecol Health Dis 3: 87–93.

    Article  Google Scholar 

  • Engelhardt W, Busche R, Gros G, Rechkemmer G (1991) Absorption of short-chain fatty acids: Mechanisms and regional differences in the large intestine. In: Cummings JH, Rombeau, JL, Sakata T, eds. Short-chain Fatty Acids: Metabolism and Clinical Importance, pp. 60–62. Columbus: Ross Laboratories Press.

    Google Scholar 

  • Etterlin C, McKeowen A, Bingham SA, Elia M, Macfariane GT, Cummings JH (1992). D-lactate and acetate as markers of fermentation in man. Gastroenterology 102: A551.

    Google Scholar 

  • Fauque G, Peck HD, Moura JJG. et al. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 54: 299–344.

    Article  CAS  Google Scholar 

  • Fauque G, LeGall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL, eds. Variations in Autotrophic Life, pp. 271–337. New York: Academic Press.

    Google Scholar 

  • Ferro-Luzzi Ames, G (1990) Energetics of periplasmic transport mechanisms. In: Krulwisch TA, ed. Bacterial Energetics, pp. 225–246. San Diego: Academic Press.

    Google Scholar 

  • Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ, ed. Human Intestinal Microflora in Health and Disease, pp. 3–31. London: Academic Press.

    Chapter  Google Scholar 

  • Florin THJ, Neale G, Gibson GR, Christi SU, Cummings JH (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32: 766–773.

    Article  PubMed  CAS  Google Scholar 

  • Florin THJ, Neale G, Cummings JH (1990) The effect of dietary nitrate on nitrate and nitrite excretion in man. Br J Nutr 64: 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39: 181–213.

    Article  CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfariane GT (1988a) Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol 65: 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfariane GT (1988b) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54: 2750–2755.

    PubMed  CAS  Google Scholar 

  • Gibson GR, Macfariane GT, Cummings JH (1988c) Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfariane GT, et al. (1990) Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31: 679–683.

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfariane GT (1991) Growth and activities of sulphatereducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 86: 103–112.

    Article  CAS  Google Scholar 

  • Gibson GR, Macfariane S, Macfariane GT (1993) Metabolic interactions involving sulphate-reducing bacteria and methanogenic bacteria in the human large intestine. FEMS Microbiol Ecol 12: 117–125.

    Article  CAS  Google Scholar 

  • Gottschalk G, Peinemann S (1992) The anaerobic way of life. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd Ed. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 301–311. New York: Springer-Verlag.

    Google Scholar 

  • Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov. acetogenic bacteria from the bovine rumen. Arch Microbiol 151: 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WA (1988) Energy transduction in anaerobic bacteria. In: Anthony C, ed. Bacterial Energy Transduction, pp. 83–149. London: Academic Press.

    Google Scholar 

  • Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifid Microflora 5: 37–50.

    Google Scholar 

  • Higgins CF, Hiles ID, Whalley K, Jamieson DK (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4: 1033–1040.

    PubMed  CAS  Google Scholar 

  • Hilton MG, Mead GC, Elsden SR (1975) The metabolism of pyrimidines by proteolytic clostridia. Arch Microbiol 102: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Hino T, Kuroda S (1993) Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl Environ Microbiol 59: 255–259.

    PubMed  CAS  Google Scholar 

  • Hino T, Shimada K, Maruyama T (1994) Substrate preference in a strain of Megasphaera elsdenii, a ruminai bacterium, and its implications in propionate production and growth competition. Appl Environ Microbiol 60: 1827–1831.

    PubMed  CAS  Google Scholar 

  • Huisingh J, McNeill JJ, Matrone G (1974) Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Appl Microbiol 28: 489–497.

    PubMed  CAS  Google Scholar 

  • Hungate RE (1966) The Rumen and Its Microbes, pp. 8-90. New York: Academic Press.

    Google Scholar 

  • Hylemon PB, Young JL, Roadcap RF, Phibbs PV (1977) Uptake and incorporation of glucose and mannose by whole cells of Bacteroides thetaiotaomicron. Appl Environ Microbiol 34: 488–494.

    PubMed  CAS  Google Scholar 

  • Iyengar R, Stueke DJ, Mareletta MA (1987) Macrophage synthesis of nitrite, nitrate and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6369–6373.

    Article  PubMed  CAS  Google Scholar 

  • Jones CW (1988) Membrane associated energy conservation in bacteria: a general introduction. In: Anthony C, ed. Bacterial Energy Transduction, pp. 1–82. London: Academic Press.

    Google Scholar 

  • Kandier O (1983) Carbohydrate metabolism in lactic acid bacteria. Anton van Leeuwen 49: 209–224.

    Article  Google Scholar 

  • Keith SM, Macfarlane GT, Herbert RA (1982) Dissimilatory nitrate reduction by a strain of Clostridium butyricum isolated from estuarine sediments. Arch Microbiol 132: 62–66.

    Article  CAS  Google Scholar 

  • Kirk E (1949) The quantity and composition of human colonie flatus. Gastroenterology 12: 782–794.

    PubMed  CAS  Google Scholar 

  • Kundig W (1974) Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransferase system (PTS). J Supramol Struc 2: 695–714.

    Article  CAS  Google Scholar 

  • Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54: 2723–2727.

    PubMed  CAS  Google Scholar 

  • Levitt MD (1969) Production and excretion of hydrogen gas in man. N Engl J Med 281: 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Levitt MD (1971) Volume and composition of human intestinal gas determined by means of an intestinal washout technique. N Engl J Med 284: 1394–1398.

    Article  PubMed  CAS  Google Scholar 

  • Levitt MD, Gibson GR, Christi SU (1995) Gas metabolism in the large intestine. In: Gibson GR, Macfarlane GT, eds. Human Colonie Bacteria: Role in Nutrition, Physiology and Health, pp. 131–154. Boca Raton: CRC Press.

    Google Scholar 

  • Macfarlane GT, Cummings JH (1991) The colonic flora, fermentation, and large bowel digestive function. In: Philips SF, Pemberton JH, Shorter RG, eds. The large intestine: physiology, pathophysiology and disease. New York: Raven Press, pp. 51–92.

    Google Scholar 

  • Macfarlane GT, Englyst HE (1986) Starch utilization by the human large intestinal microflora. J Appl Bacteriol 60: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR (1991) Co-utilization of polymerized carbon sources by Bacteroides ovatus grown in a two-stage continuous culture system. Appl Environ Microbiol 57: 1–6.

    PubMed  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR (1994) Metabolic activities of the normal colonie flora. In: Gibson SAW, ed. Human health: the contribution of microorganisms. London: Springer Verlag, pp. 17–52.

    Google Scholar 

  • Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72: 57–64.

    PubMed  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR, Macfarlane S (1994) Short chain fatty acid and lactate production by human intestinal bacteria grown in batch and continuous culture. In: Binder HJ, Cummings JH, Soergel KH, eds. Short Chain Fatty Acids. Lancaster: Kluwer Academic Publishers, pp. 44–60.

    Google Scholar 

  • Macfarlane GT, Hay S, Macfarlane S, Gibson GR (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase produduction by Bacteroides ovatus, in batch and continuous culture. J Appl Bacteriol 68: 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Macy JM, Ljungdahl LG, Gottschalk G (1978) Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol 134: 84–91.

    PubMed  CAS  Google Scholar 

  • Macy JM, Probst I, Gottschalk G (1975) Evidence for cytochrome involvement in fumarate reduction and adenosine 5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol 123: 436–442.

    PubMed  CAS  Google Scholar 

  • Magasanik B (1970) Glucose effects: inducer exclusion and repression. In: The Lactose Operon, pp. 189–319. Cold Spring Harbor, NY: Cold Spring Harbor Laboratories.

    Google Scholar 

  • Martin SA, Russell JB (1986) Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminai bacteria: evidence for the phosphotransferase transport system. Appl Environ Microbiol 52: 1348–1352.

    PubMed  CAS  Google Scholar 

  • Martin SA, Russell JB (1988) Mechanisms of sugar transport in the rumen bacterium Selenomonas ruminantium. J Gen Microbiol 134: 819–828.

    CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biochemistry of methane formation. In: Gould RF, ed. Advances in Chemistry Series 105, pp. 11–22. Washington: American Chemical Society.

    Google Scholar 

  • McGinnis JF, Paigen K (1969) Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. J Bacteriol 100: 902–913.

    PubMed  CAS  Google Scholar 

  • McGinnis JF, Paigen K (1973) Site of catabolite inhibition of carbohydrate metabolism. J Bacteriol 114: 885–887.

    PubMed  CAS  Google Scholar 

  • McKay FL, Eastwood MA, Brydon WG (1985) Methane excretion in man: a study of breath, flatus and feces. Gut 26: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39: 338–342.

    PubMed  CAS  Google Scholar 

  • Michels PAM, Michels JPJ, Boonstra J, Konings WN (1979) Generation of an electrochemical gradient in bacteria by excretion of metabolic end products. FEMS Microbiol Lett 5: 357–364.

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131: 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1963) Molecule, group, and electron translocation through natural membranes. Biochem Soc Symp 22: 142–168.

    Google Scholar 

  • Mitchell WJ, Sadegh Roolin M, Mosely MJ, Booth IR (1987) Regulation of carbohydrate utilization in Clostridium pasteurianum. J Gen Microbiol 133: 31–36.

    CAS  Google Scholar 

  • Mitsuoka T (1982) Recent trends in research on intestinal flora. Bifid Microflora 1: 3–24.

    Google Scholar 

  • Modler HW, McKellar RC, Yaguchi M (1990) Bifidobacteria and bifidogenic factors. Can Inst Food Sci Technol J 23: 29–41.

    CAS  Google Scholar 

  • Morris JG (1986) Anaerobiosis and energy-yielding metabolism. In: Barnes EM, Mead GC, eds. Anaerobic Bacteria in Habitats Other Than Man, pp. 1–21. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli during theformation of spheroplasts. J Biol Chem 240: 3685–3692.

    PubMed  CAS  Google Scholar 

  • Ng SKC, Hamilton IR (1973) Carbon dioxide fixation by Veillonella parvula M4 and its relation to propionic acid formation. Can J Microbiol 19: 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J Gen Microbiol 135: 175–187.

    CAS  Google Scholar 

  • Patni NJ, Alexander JK (1971) Catabolism of fructose and mannitol in Clostridium thermocellurn: presence of phophoenolpyruvate: fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol-1-phosphate dehydrogenase in cell extracts. J Bacteriol 105: 226–231.

    PubMed  CAS  Google Scholar 

  • Peck HD (1993) Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom JM, Singleton R, eds. The Sulfate-Reducing Bacteria: Contemporary Perspectives, pp. 41–76. New York: Springer Verlag.

    Chapter  Google Scholar 

  • Peck HD, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Phil Trans R Soc Lond B298: 443–466.

    Google Scholar 

  • Peled Y, Gilat T, Libermann T, Bujanover Y (1985) The development of methane production in childhood and adolescence. J Pedriatr Gastroenterol Nutr 4: 575–579.

    Article  CAS  Google Scholar 

  • Pettifer GL, Latham MJ (1979) Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J Gen Microbiol 110: 29–38.

    Article  Google Scholar 

  • Postgate JR (1984) The Sulphate-Reducing Bacteria, 2nd Ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Postma P, Roseman S (1976) The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta 457: 213–257.

    Article  CAS  Google Scholar 

  • Postma P, Lengeier LW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49: 232–269.

    PubMed  CAS  Google Scholar 

  • Prins RA, Lankhorst A (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1: 255–258.

    Article  CAS  Google Scholar 

  • Rasic JL (1983) The role of dairy foods containing bifido-and acidophilus bacteria in nutrition and health? North Eur Dairy J 48: 80.

    Google Scholar 

  • Roediger WEW, Duncan A, Kapaniris O, Millard S (1993) Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 104: 802–809.

    PubMed  CAS  Google Scholar 

  • Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv Appl Microbiol 3: 1–60.

    Article  Google Scholar 

  • Rouviere PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263: 7913–7916.

    PubMed  CAS  Google Scholar 

  • Russell JB, Strobel HJ, Martin SA (1990). Strategies of nutrient transport by ruminai bacteria. J Dairy Sci 73: 2996–3012.

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Baldwin RL (1978) Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl Environ Microbiol 36: 319–329.

    PubMed  CAS  Google Scholar 

  • Saier MH, Chin M (1990) Energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. In: Krulwich TA, ed. Bacterial Energetics, pp. 273–299. San Diego: Academic Press.

    Google Scholar 

  • Saier MH, Fagan MJ, Hoischen C, Reizer J (1993) Transport mechanisms. In: Sonenshein A, Hoch JA, Losick R, eds. Bacillus subtilus and Other Gram Positive Bacteria, pp. 133–156. Washington: American Society for Microbiology.

    Google Scholar 

  • Saier MH, Roseman S (1976) Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 251: 6606–6615.

    PubMed  CAS  Google Scholar 

  • Salyers AA (1984) Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38: 293–313.

    Article  PubMed  CAS  Google Scholar 

  • Salyers AA, Arthur R, Kuritza A (1981) Digestion of larch arabinogalactan by a strain of human colonic Bacteroides growing in continuous culture. J Agric Food Chem 29: 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel HG (1986) General Microbiology, 6th Ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Segal I, Walker ARP, Lord S, Cummings JH (1988) Breath methane and large bowel cancer risk in contrasting African populations. Gut 29: 608–613.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Weimer PJ (1992) Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol 58: 2583–2591.

    PubMed  CAS  Google Scholar 

  • Silhavy TJ, Ferenci T, Boos W (1978) Sugar transport systems in Escherichia coli. In: Rosen BP, ed. Bacterial Transport, pp. 127–169. New York: Marcel Dekker.

    Google Scholar 

  • Sorensen J, Christensen D, Jorgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl Environ Microbiol 42: 5–11.

    PubMed  CAS  Google Scholar 

  • Stevani J, Durand M, DeGraeve K, Demeyer D, Grivet JP (1991) Degradative abilities and metabolism of rumen and hindgut microbial ecosystems. In: Sakata T, Snipes RL, eds. Hindgut ′91, pp. 123–135. Tokyo: Senshu University Press.

    Google Scholar 

  • Stille W, Truper HG (1984) Adenylylsulfate reductase in some new sulfate-reducing bacteria. Arch Microbiol 41: 1230–1237.

    Google Scholar 

  • Strobel HJ (1992) Vitamin B12-dependent propionate production by the ruminai bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58: 2331–2333.

    PubMed  CAS  Google Scholar 

  • Strobel HJ (1993) Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminai bacterium Selenomonas ruminantium. Appl Environ Microbiol 59: 40–46.

    PubMed  CAS  Google Scholar 

  • Strocchi A, Levitt MD (1992) Factors affecting hydrogen production and consumption by human fecal flora: The critical role of hydrogen tension and methanogenesis. J Clin Invest 89: 1304–1311.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CD, Wolfe RS (1974) Structure and methylation of Coenzyme M, (HSCH2CH2SO3). J Biol Chem 240: 4879–4885.

    Google Scholar 

  • Thauer R, Jungermann K, Decker K (1977) Energy conservation in anaerobic bacteria. Bacteriol Rev 41: 100–180.

    PubMed  CAS  Google Scholar 

  • Thurston B, Dawson KA, Strobel HJ (1993) Cellobiose versus glucose utilization by the ruminai bacterium Ruminococcus albus. Appl Environ Microbiol 59: 261–2637.

    Google Scholar 

  • Thurston B, Dawson KA, Strobel HJ (1994) Pentose utilization by the ruminai bacterium Ruminococcus albus. Appl Environ Microbiol 60: 1087–1092.

    PubMed  CAS  Google Scholar 

  • Tsai HH, Sunderland D, Gibson GR, Hart CA, Rhodes JM (1992) A novel mucin sulphatase from human faeces: its identification, purification and characterization. Clin Sci 82: 447–454.

    PubMed  CAS  Google Scholar 

  • Turton LJ, Drucker DB, Ganguli LA (1983) Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius. Med Microbiol 16: 61–67.

    Article  CAS  Google Scholar 

  • Veryrat A, Monedero V, Perez-Martinez G (1994) Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. J Gen Microbiol 140: 1141–1149.

    Google Scholar 

  • Wallnofer P, Baldwin RL (1967) Pathway of propionate formation in Bacteroides ruminicola. J Bacteriol 93: 504–505.

    PubMed  CAS  Google Scholar 

  • Weiseger RA, Pinkus LM, Jakoby WB (1980) Thiol-S-methyltransferase: suggested role in detoxification of intestinal hydrogen sulphide. Biochem Pharmacol 29: 2885–2887.

    Article  Google Scholar 

  • West IC (1970) Lactose transport coupled to proton movements in Escherichia coli. Biochem Biophys Res Commun 41: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • West IC, Mitchell P (1973) Stoichiometry of lactose-proton symport across the plasmamembrane of Escherichia coli. Biochem J 132: 587–592.

    PubMed  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd Ed. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 719–767. New York: Springer-Verlag.

    Google Scholar 

  • Widdel F, Hansen TA (1992) The dissimilatory sulfate-and sulfur-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd Ed. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 582–624. New York: Springer-Verlag.

    Google Scholar 

  • Williams AG, Withers SE (1985) Formation of polysaccharide depolymerase and glycoside hydrolase enzymes by Bacteroides ruminicola subsp. ruminicola grown in batch and continuous culture. Curr Microbiol 12: 79–84.

    Article  CAS  Google Scholar 

  • Wilson DM, Wilson TH (1987) Cation specificity for sugar substrates of melibiose carriers in Escherichia coli. Biochim Biophys Acta 904: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Wisker E, Feldheim W (1994) Energy value of fermentation. In: Binder HJ, Cummings JH, Soergel KH, eds. Short Chain Fatty Acids, pp. 20–28. Lancaster: Kluwer Academic Publishers.

    Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth. Trends Biochem Sci 11: 14–18.

    Article  CAS  Google Scholar 

  • Woods WA (1961) Fermentation of carbohydrates and related compounds. In: Gunsalus IC, Stanier RY, eds. The Bacteria: A Treatise on Structure and Function, pp. 59–100. New York: Academic Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Macfarlane, G.T., Gibson, G.R. (1997). Carbohydrate Fermentation, Energy Transduction and Gas Metabolism in the Human Large Intestine. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics