Skip to main content

Phytates in Canola/Rapeseed

  • Chapter
Canola and Rapeseed

Abstract

Rapeseed is a good source of high-quality protein. However, its use for both human food and animal feed is limited by the presence of high fiber and antinutritional factors such as glucosinolates, polyphenols, and phytic acid (PA). Much work has been done to solve the fiber, glucosinolate, and phenolic problems, and these are discussed elsewhere in the book. Since PA can bind with minerals and proteins and is thought to reduce their bioavailability, studies have also been done to understand its reactions, nutritional effect, processing changes, and removal from rapeseed. This chapter provides an overview of such research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alli, I., and Houde, R. 1986. Characterization of phytate in canola. Research on Canola Seed, Oil, Meal and Meal Fractions. Winnipeg: Canola Council of Canada. 159–165.

    Google Scholar 

  • Anderson, G. H.; Harris, L.; Rao, A. V.; and Jones, J. D. 1976. Trace mineral deficiencies in rats caused by feeding rapeseed flour during growth, gestation, and lactation. J. Nutr. 106: 1166–1174.

    CAS  Google Scholar 

  • Anderson, R. J. 1914. A contribution to the chemistry of phytin. J. Biol. Chem. 17:171–190.

    Google Scholar 

  • Apgar, J. 1970. Effect of Zn deficiency on maintenance of pregnancy in the rat. J. Nutr. 100: 470–475.

    CAS  Google Scholar 

  • Apgar, J. 1972. Effect of Zn deprivation for day 12, 15, or 18 of gestation on parturition in the rat. J. Nutr. 102: 343–348.

    CAS  Google Scholar 

  • Atwal, A. S.; Eskin, N. A. M.; McDonald, B. E.; and Vaisey-Genser, M. 1980. The effects of phytate on N utilization and Zn metabolism in young rats. Nutr. Rep. Inter. 21: 257–267.

    CAS  Google Scholar 

  • Barre, R.; Courtois, J. E.; and Wormser, G. 1954. Etude de la structure de l’acide phytique au moyen de ses courbes de titration et de la conductivite de ses solutions. (Study of the structure of phytic acid pertaining to its titration curves and conductivity of its solutions.) Bull. Soc. Chim. Biol. 36: 455–474.

    CAS  Google Scholar 

  • Barre, R., and Nguyen-van-Huot, N. 1965a. Etude de la combinaison de l’acide phy tique avec la serum albumine humaine native, acetylee et des amine. (Study of the combination of phytic acid with human serum albumin, native, acetylated and its amines.) Bull. Soc. Chim. Biol. 47: 1,399–1,409.

    CAS  Google Scholar 

  • Barre, R., and Nguyen-van-Huot, N. 1965b. Etude de la combinaison de l’ovalbumine avec les acids phosphorique, ü-glycerophosphorique et phytique. (Study of the combination of ovalbumin with phosphoric, ü-glycerophosphoric and phytic acid.) Bull. Soc. Chim. Biol. 47: 1,419–1,427.

    CAS  Google Scholar 

  • Beal, L., and Mehta, T. 1985. Zn and phytate distribution in peas: influence of heat treatment, germination, pH, substrate, and P on pea phytate and phytase. J. Food Sci. 50: 96–100.

    Article  CAS  Google Scholar 

  • Bell, J. M.; Giovanetti, P.; Sharby, T. F.; and Jones, J. D. 1976. Digestibility and protein quality evaluation of rapeseed flour. Can. J. Anim. Sci. 56: 763–768.

    Article  Google Scholar 

  • Bindra, G.; Gibson R. S.; and Thompson, L. U. 1986. (PAX Ca)/Znratios in Asian immigrant lacto-ovo vegetarian diets and their relationships to Zn nutriture. Nutr. Res. 6:475–483.

    Article  Google Scholar 

  • Bjorck I. M., and Nyman, M. E. 1987. In-vitro effects of PA and polyphenols on starch digestibility and fiber digestion. J. Food Sci. 52:1,588–1,594.

    Article  Google Scholar 

  • Blaicher, F.M.; Elstner, F.; Stein, W.; and Mukherjee, K. D. 1983. Rapeseed protein isolates: effect of processing on yield and composition of protein. J. Agric. Food Chem. 31: 358–362.

    Article  CAS  Google Scholar 

  • Borade, V. P.; Kadam, S. S.; and Salunkhe, D. K. 1984. Changes in phytate P and minerals during germination and cooking of horse gram and moth bean. Qual. Plant Foods Human. Nutr. 34: 151–159.

    Article  CAS  Google Scholar 

  • Brooks, J. R., and Mon, C. V. 1982. Phytateremoval from soybean protein isolates using ion-exchange processing treatments. J. Food Sci. 47: 1,280–1,282.

    Article  CAS  Google Scholar 

  • Camus, M. C., and Laporte, J. C. 1976. Inhibition de la proteolyse pepsique en vitro par de ble. Role de l’acide phytique des issues. Ann. Biol. Biochem. Biophys. 16: 719–729.

    Article  CAS  Google Scholar 

  • Carnovale, E.; Lugaro, E.; and Lombard-Bocea, G. 1988. PA in fava bean and peas: effect on protein availability. Cereal Chem. 65: 114–117.

    CAS  Google Scholar 

  • Cawley, R. W., and Mitchell, T. A. 1968. Inhibition of wheat alpha amylase by bran PA. J. Sci. Food Agric. 19: 106–108.

    Article  Google Scholar 

  • Chang, C. W. 1967. Study of phytase and fluoride effects in germinating corn seeds. Cereal Chem. 44: 129–142.

    CAS  Google Scholar 

  • Chen, L. H., and Pan, S. H. 1977. Decrease of phytates during germination of pea seeds (Pisum sativum L.). Nutr. Rep. Intern. 46: 125–131.

    Google Scholar 

  • Cheryan, M. 1980. PA interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13: 297–334.

    Article  CAS  Google Scholar 

  • Cho, Y. S., and Thompson, L. U. 1984. Precipitation behavior of extracted N, PA, and minerals in rapeseed flour modified by acylating agents. J. Food Sci. 49: 765–767.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. 1980. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. New York: Elsevier Sci. Publ. Co.

    Google Scholar 

  • Costello, A. J. R.; Glonek, T.; and Myers, T. S. 1976. P-31 nuclear magnetic resonance-pH titrations of myoinositol hexaphosphate. Carbohydr. Res. 46: 159–171.

    Article  CAS  Google Scholar 

  • Dagher, S.M.; Shadarevian, S.; andBirbari, W. 1987. Preparation of high-bran Arabic bread with low-PA content. J. Food Sci. 52:1, 600–1, 603.

    Article  Google Scholar 

  • Davies, N. T. 1982. Effects of PA on mineral availability, in Dietary Fiber in Health and Disease, eds. G. Vahoney and D. Kritchevsky. New York: Plenum Press. 105–116.

    Google Scholar 

  • Davies, N. T.; Carswell, A. J. P.; and Mills, C. F. 1985. The effect of variation in dietary C intake on the phytate-Zn interaction in rats, in Trace Elements in Man and Animals, eds. C. F. Mills, I. Bremmer, and J. K. Cheters. Slough, England: Commonwealth Agricultural Bureaux, 456–457.

    Google Scholar 

  • Davies, N. T., and Olpin, S. E. 1979. Studies on the phytate: Zn molar contents in diets as a determinant of Zn availability to young rats. Br. J. Nutr. 41: 590–603.

    CAS  Google Scholar 

  • DeBoland, A.; Gamer, G. B.; and O’Dell, B. L. 1975. Identification and properties of phytate in cereal grains and oilseed products. J. Agric. Food Chem. 23: 1,186–1,189.

    Article  CAS  Google Scholar 

  • Deshpande, S. S., and Cheryan, M. 1984. Effects of PA and divalent cations and their interactions on alpha amylase activity. J. Food Sci. 49: 516–519.

    Article  CAS  Google Scholar 

  • Eklund, A. 1973. Influence of detoxified rapeseed protein concentrate on reproduction in the female rat. Nutr. Rep. Int. 7: 647–654.

    CAS  Google Scholar 

  • Erdman, J. W., Jr. 1979. Oilseed phytates: nutritional implications. J. Am. Oil. Chem. Soc. 56: 736–741.

    Article  CAS  Google Scholar 

  • Eskin, N. A. M., and Wiebe, S. 1983. Changes in phytase activity and phytate during germination of two fava bean cultivars. J. Food Sci. 48: 270–271.

    Article  CAS  Google Scholar 

  • Fordyce, E. J.; Forbes, R. M.; Robbins, K. R.; and Erdman, J. W., Jr. 1987. (Phytate X Ca)/Zn molar ratios: are they predictive of Zn bioavailability? J. Food Sci. 52:440–141.

    Article  Google Scholar 

  • Gillberg, L. 1977. A study of thenutritivevalue of soybeanmeal and soybean protein isolate. Nutr. Rep. Int. 16: 603–610.

    CAS  Google Scholar 

  • Gillberg, L. 1978. Influence of electrolytes on the solubility of rapeseed protein isolate. J. Food Sci. 43: 1,219–1,223.

    Article  CAS  Google Scholar 

  • Gillberg, L., and Tornell, B. 1976a. Preparation of rapeseed protein isolates: dissolution and precipitation behavior of rapeseed proteins. J. Food Sci. 41: 1,063–1,068.

    Article  CAS  Google Scholar 

  • Gillberg, L., and Tomell, B. 1976b. Preparation of rapeseed protein isolates: precipitation of rapeseed protein in the presence of polyacids. J. Food Sci. 41: 1070–1075.

    Article  CAS  Google Scholar 

  • Gosselin, R. E., and Coghlan, E. R. 1953. The stability of complexes between Ca and orthophosphate, polymeric phosphate, and phytate. Arch. Biochem. Biophys. 45: 301–305.

    Article  CAS  Google Scholar 

  • Graf, E. 1983. Applications of PA. J. Am. Oil Chem. Soc. 60: 1,861–1,867.

    Article  CAS  Google Scholar 

  • Graf, E. 1986. Chemistry and applications of PA: an overview, in Phytic Acid: Chemistry and Applications, ed. E. Graf. Minneapolis: Pilatus Press. 1–21.

    Google Scholar 

  • Graf, E.; Empson, K.: and Eaton, J. W. 1987. PA: a natural antioxidant. J. Biol. Chem. 262:1,1647–1,1650.

    Google Scholar 

  • Greenwood, J. S. 1990. Phytin synthesis and deposition, in Recent Advances in Development and Germination of Seeds,ed. R. B. Taylorson. New York: Plenum Publ. Corp. (in press).

    Google Scholar 

  • Gupta, S. K., and Venkitasubramanian, T. A. 1975. Production of aflatoxin on soybeans. Appl. Microbiol. 29: 834–836.

    CAS  Google Scholar 

  • Hafez, Y. S.; Mohammed, A. I.; Perera, P. A.; Singh, G.; and Hussein, A. S. 1989. Effects of microwave heating and irradiation on phytate and phospholipid contents of soybean (Glycine max L.). J. Food Sci. 54: 958–962.

    Article  CAS  Google Scholar 

  • Hallberg, L. 1987. Wheat fiber, phytates, and Fe absorption. Scand. J. Gastroenterol. 22: 73–79.

    Article  Google Scholar 

  • Harland, B. F., and Harland, J. 1980. Fermentative reduction of phytate in rye, white, and whole-wheat breads. Cereal Chem. 57: 226–229.

    CAS  Google Scholar 

  • Harland, B. F., and Oberleas, D. 1989. Phytate in foods, in World Rev. Nutr. Diet, ed. G. Bourne. Basel, Switzerland: Karger. 235–259.

    Google Scholar 

  • Hofstein, A. V. 1973. X-ray analysis of microelements in seeds of Crambe abyssicia. Physiol. Plant. 29: 76–81.

    Article  Google Scholar 

  • Jariwalla, R. J.; Sabin, R.; Lawson S.; Bloch, D. A.; Prender, M.; Andrews, V.; and Herman, Z. S. 1988. Effect of PA (phytate) on the incidence and growth rate of tumors promoted in Fischer rats by a magnesium supplement. Nutr. Res. 8: 813–827.

    Article  CAS  Google Scholar 

  • Jenkins, D. J. A.; and Jenkins, A. L. 1987. The glycemic index and the dietary treatment of hypertriglyceridemia and diabetes. J. Am. Coll. Nutr. 6: 11–16.

    CAS  Google Scholar 

  • Jenkins, D. J. A.; Thome, M. J.; Taylor, R. H.; Bloom, S. R.; Sarson, D. L.; Jenkins, A. L.; Anderson, G. H.; and Blendis, L. 1987a. Effect of modifying the rate of digestion of a food on the blood-glucose, amino-acid, and endocrine responses in patients with cirrhosis. Am. J. Gastroenterol. 82: 223–230.

    CAS  Google Scholar 

  • Jenkins, D. J. A.; Wolever, T. M. S.; Collier, G.; Ocana, A.; Rao, A. V.; Buckley, G.; Lam, Y; Mayer, A.; and Thompson, L. U. 1987b. The metabolic effects of a low-glycemic index diet. Am. J. Clin. Nutr. 46: 968–975.

    CAS  Google Scholar 

  • Jenkins, D. J. A.; Wolever, T. M. S.; Jenkins, A. L.; Thompson, L. U.; Rao, A. V.: and Francis, T. 1986. The glycemic index: blood-glucose response to foods, in Basic and Clinical Aspects of Dietary Fiber, ed. G. V. Vahouny and D. Kritchevsky. New York: Plenum Press. 167–179.

    Google Scholar 

  • Jenkins, D. J. A.; Wolever, T. M. S.; Kalmusky, T. M. S.; Kalmusky, J.; Guidici, S.; Giordano, C.; Wong, G. S.; Bird, J.; Patten, R.; Hall, M.; Buckley, G.; and Little, J. A. 1985. Lowglycemic index carbohydrate food in the management of hyperlipidemia. Am. J. Clin. Nutr. 42: 604–617.

    CAS  Google Scholar 

  • Jenkins, D. J. A.; Wong, G. S.; Patten, R. P.; Bird, J.; Hall, M.; Buckley, G.; McGuire, V.; Reichert, R.; and Little, J. A. 1983. Leguminous seeds in the dietary management of hyperlipidemia. Am. J. Clin. Nutr. 38: 567–573.

    CAS  Google Scholar 

  • Johnson, L. F., and Tate, M. E. 1969. Structure of PA. Can. J. Chem. 47: 63–73.

    Article  CAS  Google Scholar 

  • Jones, J. D. 1979. Rapeseed protein concentrate preparation and evaluation. J. Am. Oil Chem. Soc. 56: 716–721.

    Article  CAS  Google Scholar 

  • Keith, M. O., and Bell, J. M. 1987a. Effects of canola meal on tissue trace-mineral concentrations in growing pigs. Can. J. Anim. Sci. 67: 133–140.

    Article  CAS  Google Scholar 

  • Keith, M. O., and Bell, J. M. 1987b. Effects of canola meal on absorption and tissue levels of trace minerals in rats. Can. J. Anim. Sci. 67: 141–149.

    Article  CAS  Google Scholar 

  • Knuckles, B. E.; Kuzmicky, D. D.; and Betschart, A. A. 1985. Effect of phytate and partially hydrolyzed phytate on in-vitro protein digestibility. J. Food Sci. 50:1, 080–1, 082.

    Article  CAS  Google Scholar 

  • Knuckles, B. E.; Kuzmicky, D. D.; Gumbman, M. R.; and Betschart, A. A. 1989. Effect of myoinositol phosphate esters on in-vitro and in-vivo digestibility of proteins. J. Food Sci. 54: 1,348–1,350.

    Article  CAS  Google Scholar 

  • Kratzer, F. H., and Vohra, P. 1986. Chelates in Nutrition. Boca Raton: CRC Press.

    Google Scholar 

  • Kumar, K. G.; Venkataraman, L. V.; Jaya, T. V.; and Krishnamurthy, K. S. 1978. Cooking characteristics of some germinated legumes: changes in phytins, Ca++ Mg2+ and pectins. J. Food Sci. 43: 85–88.

    Article  CAS  Google Scholar 

  • Lathia, D.; Hoch, G.; and Kievernagel, Y. 1987. Influence of phytate on in-vitro digestibility of casein under physiological conditions. Plant Foods for Human Nutr. 37: 229–235.

    Article  CAS  Google Scholar 

  • Lease, J. G. 1966. The effect of autoclaving sesame meal on its PA content and on the availability of its Zn to the chick. Poult. Sci. 45: 237–242.

    Article  CAS  Google Scholar 

  • Lieden, S. A., and Hambraeus, L. 1977. Removal from rapeseed of a low-molecular-weight substance affecting the pregnant rat. Nutr. Rep. Internat. 16: 367–376.

    CAS  Google Scholar 

  • Liu, R.; Thompson, L. U.; and Jones, J. D. 1982. Yield and nutritive value of rapeseed protein concentrate. J. Food Sci. 47: 977–981.

    Article  CAS  Google Scholar 

  • Lolas, G.M., and Markakis, P. 1977. The phytase of navy bean (Phaselus vulgaris). J. Food Sci. 42: 1,094–1,106.

    Article  CAS  Google Scholar 

  • Lott, J. N. A. 1985. Accumulation of seed reserves of P and other minerals, in Seed Physiology, vol. 1, ed. D. R. Murray. Sidney, Australia: Academic Press. 139–166.

    Google Scholar 

  • Lu, S.; Kim, H.; Eskin N.; Latta, M.; and Johnson, S. 1987. Changes in phytase activity and phytate during the germination of six canola cultivars. J. Food Sci. 52: 173–175.

    Article  CAS  Google Scholar 

  • McDonald, B. E.; Lieden, S. A.; and Hambraeus, L. 1978. Evaluation of the protein quality of rapeseed meals, flours, and isolate. Nutr. Rep. Int. 17: 49–56.

    CAS  Google Scholar 

  • McKenzie-Parnell, M. M., and Davies, N. T. 1986. Destruction of PA during home bread making. Food Chem. 22: 181–187.

    Article  CAS  Google Scholar 

  • Maclaughlan, J. N.; Jones, J. D.; Shah, B. G.; and Beare-Rogers, J. L. 1975. Reproduction in rats fed protein concentrate from mustard or rapeseed. Nutr. Rep. Int. 11: 327–335.

    Google Scholar 

  • Maddaih, V. T.; Kurnick, A.; and Reid, B. L. 1964. PA studies. Proc. Soc. Exp. Biol. Med. 115: 391–393.

    Google Scholar 

  • Maga, J. A. 1982. Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Food Chem. 30: 1–9.

    Article  CAS  Google Scholar 

  • Magee, A. C., and Matrone, G. 1960. Studies on the growth, Cu metabolism, and Fe metabolism of rats fed high levels of Zn. J. Nutr. 72: 233–242.

    CAS  Google Scholar 

  • Mandal, N. C., and Biswas, B. B. 1970. Metabolism of inositol phosphates. I. Phytase synthesis during germination in cotyledons of mung beans (Phaseolus aureus). Plant Physiol. 45: 4–7.

    Article  CAS  Google Scholar 

  • Mills, J. T., and Chong, J. 1977. Ultrastructure and mineral distribution in heat-damaged rapeseed. Can. J. Plant Sci. 57: 21–34.

    Article  CAS  Google Scholar 

  • Morris, E. R. 1986. Phytate and dietary mineral bioavailability, in Phytic Acid: Chemistry and Applications, ed. E. Graf. Minneapolis: Pilatus Press. 57–76.

    Google Scholar 

  • Morris, E. R., and Ellis, R. 1980. Bioavailability to rats of Fe and Zn in wheat bran: response to low-phytate bran and effect of the phytate/Zn molar ratio. J. Nutr. 110: 2,000–2,010.

    CAS  Google Scholar 

  • Nielsen B.; Thompson, L. U.; and Bird, R. 1987. Effect of PA on colonic epithelial cell proliferation. Cancer Letters 37: 317–325.

    Article  CAS  Google Scholar 

  • Nwokolo, E. N., and Bragg, D. B. 1977. Influence of PA and crude fiber on the availability of minerals from four protein supplements in growing chicks. Can. J. Anim. Sci. 57: 475–477.

    Article  CAS  Google Scholar 

  • Nwokolo, E. N., and Bragg, D. B. 1980. Biological availability of minerals in rapeseed meal. Poult. Sci. 59: 155–158.

    Article  CAS  Google Scholar 

  • Nwokolo, E. N.; Bragg, D. B.; and Kitts, N. D. 1976. The availability of amino acid from palm kernel, soybean, cottonseed, and rapeseed meal for the growing chicks. Poult Sci. 55: 2,300–2,304.

    Article  CAS  Google Scholar 

  • Oberleas, D. 1973. Phytate, in Toxicants Naturally Occurring in Foods. Washington, D.C.: Nat. Acad. Sci. 363–371.

    Google Scholar 

  • Oberleas, D. 1975. Factors influencing availability of minerals, in Proceedings of the Fourth Western Hemisphere Nutrition Congress, ed. Council on Foods and Nutrition. Chicago: Am. Med. Assoc. 156–161.

    Google Scholar 

  • Oberleas, D. 1983. The role of phytate in Zn availability, in Nutritional Bioavailability of Zn, ed. G. E. Inglett. Washington, D.C.: Am. Chem. Soc. 145–158.

    Chapter  Google Scholar 

  • O’Dell, B. L. 1969. Effect of dietary components upon Zn availability. A review of original data. Am. J. Clin. Nutr. 22:1,315–1,322.

    Google Scholar 

  • O’Dell, B. L. 1989. Mineral interactions relevant to nutrient requirements. J. Nutr. 119 (Suppl.): 1,832–1,838.

    Google Scholar 

  • Ologhobo, A. D., and Fetuga, B. L. 1984. Distribution of P and phytate in some Nigerian varieties of legumes and some effects of processing. J. Food Sci. 49: 199–203.

    Article  CAS  Google Scholar 

  • Peers, G. F. 1953. The phytase of wheat. Biochem. J. 53: 102–110.

    CAS  Google Scholar 

  • Ranhotra, G. S.; Loewe, R. J.; and Puyat, L. V. 1974. PA in soybean and its hydrolysis during bread making. J. Food Sci. 39: 1023–1026.

    Article  CAS  Google Scholar 

  • Reddy, N. R.; Balakrishnan, C. V.; and Salunkhe, D. K. 1978. Phytate P and mineral changes during germination and cooking of black-gram (Phaseolusmungo L.) seeds. J. Food Sci. 43: 540–543.

    Article  CAS  Google Scholar 

  • Reddy, N. R.; Sathe, S. K.; and Pierson, M. D. 1988. Removal of phytate from great northern bean (Phaseous vulgaris L.) and its combined density fraction. J. Food Sci. 53: 107–110.

    Article  CAS  Google Scholar 

  • Reddy, N. R.; Sathe, S. K.; and Salunkhe, D. K. 1982. Phytates in legumes and cereals. Adv. Food Res. 28: 1–92.

    Article  CAS  Google Scholar 

  • Reinhold, J. G.; Nasr,. K.; Lahimgarzadeh, A.; and Hedayati, H. 1973. Effects of purified phytate and phytate-rich bread upon metabolism of Zn, Ca, P, and N in man. Lancet 1: 283–288.

    CAS  Google Scholar 

  • Ritter, M. A.; Morr, C. V.; and Thomas, R. L. 1987. In-vitro digestibility of phytate-reduced and phenolics-reduced soy protein isolate. J. Food Sci. 52: 325–327.

    Article  CAS  Google Scholar 

  • Seo, A., and Morr, C. V. 1985. Activated carbon and ion-exchange treatments for removing phenolics and phytate from peanut protein products. J. Food Sci. 50: 262–265.

    Article  CAS  Google Scholar 

  • Serraino, M., and Thompson, L. U. 1984. Removal of PA and protein-mineral-phytate interactions in rapeseed. J. Agric. Food Chem. 32: 38–40.

    Article  CAS  Google Scholar 

  • Serraino, M.; Thompson, L. U.; Savoie, L.; and Parent, G. 1985. Effect of PA on in-vitro digestibility of rapeseed protein and amino acids. J. Food Sci. 50:1,689–1,692.

    Article  CAS  Google Scholar 

  • Shah, B. G.; Giroux, A.; Belonje, B.; and Jones, J. D. 1979. Optimal level of Zn supplementation for young rats fed rapeseed protein concentrate. J. Agric. Food Chem. 27:387–390.

    Article  CAS  Google Scholar 

  • Shah, B. G.; Giroux, A.; Belonje, B.; and Jones, J. D. 1980. Evaluation of rapeseed protein concentrate as a source of protein in a Zn-supplemented diet for young rats. J. Agric. Food Chem. 28: 36–39.

    Article  CAS  Google Scholar 

  • Shah, B. G.; Jones, J. D.; Mclaughlan, J. M.; and Beare-Rogers, J. L. 1976. Beneficial effect of Zn supplementation in young rats fed protein concentrate from rapeseed or mustard. Nutr. Rep. Int. 13:1–8.

    CAS  Google Scholar 

  • Shamsuddin, A. M.; Elsayed, A. M.; and Ullah, A. 1988. Suppression of large intestinal cancer in F344 rats by inositol hexaphosphate. Carcinogenesis 9: 577–580.

    Article  CAS  Google Scholar 

  • Shamsuddin, A. M., and Ullah. A. 1989. Inositol hexaphosphate inhibits large intestinal cancer in F344 rats five months after induction by azoxymethane. Carcinogenesis. 10: 625–626.

    Article  CAS  Google Scholar 

  • Sharma, C. B.; Goel, M.; and Irshad, M. 1978. Myoinositol hexaphosphate as potential inhibitor of alpha amylases. Phytochem. 17:201–204.

    Article  Google Scholar 

  • Sharpe, G. L.; Larsson, E. S.; and Lieden, S. A. 1975. Toxicological and teratological studies of a rapeseed protein diet in rats and mice. Nutr. Metab. 18: 245–257.

    Article  CAS  Google Scholar 

  • Singh, M., and Krikorian, A. D. 1982. Inhibition of trypsin activity in vitro by phytate. J. Agric. Food Chem. 30: 799–800.

    Article  CAS  Google Scholar 

  • Smith, S. E., and Larson, E. J. 1946. Zn toxicity in rats. Antagonistic effect of Cu and Zn. J. Biol. Chem. 163: 29–38.

    CAS  Google Scholar 

  • Spivey-Fox, M. R., and Tao, S. H. 1989. Antinutritive effects of phytate and other phosphorylated derivatives, in Nutritional Toxicology, vol 3, ed. J. Hancock. New York: Academic Press. 59–96.

    Google Scholar 

  • Stone, F. E.; Hardy, R. W.; and Spinelli, J. 1984. Autolysis of PA and protein in canola meal (Brassica spp.), wheat bran (Triticum spp.) and fish silage blends. J. Sci. Food Agric. 35: 513–519.

    Article  CAS  Google Scholar 

  • Thompson, L. U. 1986. PA: a factor influencing starch digestibility and blood-glucose response, in Phytic Acid Chemistry and Application, ed. E. Graf. Minneapolis: Pilatus Press. 173–194.

    Google Scholar 

  • Thompson, L. U. 1987. Reduction of PA in protein isolates by acylation technique. J. Am. Oil Chem. Soc. 64: 1,712–1,717.

    Article  CAS  Google Scholar 

  • Thompson, L. U. 1988. Antinutrients and blood glucose. Food Tech. 42: 123–132.

    CAS  Google Scholar 

  • Thompson, L. U. 1989. Nutritional and physiological effects of PA, in Food Proteins, ed. J. Kinsella and W. Soucie. Illinois: Am. Oil Chem. Soc. 410–431.

    Google Scholar 

  • Thompson, L. U.; Button, C. L.; and Jenkins, D. J. A. 1987. PA and Ca affect the in-vitro rate of starch digestion and blood-glucose response in man. Am. J. Clin. Nutr. 46: 467–473.

    CAS  Google Scholar 

  • Thompson, L. U., and Cho, Y. 1984a. Effect of acylation upon extractability of N, minerals, PA in rapeseed flour, and protein concentrate. J. Food Sci. 49: 771–776.

    Article  CAS  Google Scholar 

  • Thompson, L. U., and Cho, Y. 1984b. Chemical composition and functional properties of acylated low-phytate rapeseed protein isolate. J. Food Sci. 49: 1,584–1,588.

    Article  CAS  Google Scholar 

  • Thompson, L. U.; Poon, P. A.; and Procope, C. 1976. Isolation of rapeseed proteins using sodium hexametaphosphate. Can. Inst. Food Sci. Tech. J. 9: 15–19.

    CAS  Google Scholar 

  • Thompson, L. U.; Reyes, E.; and Jones, J. D. 1982. Modification of the Na hexametaphosphate extraction-precipitation technique of rapeseed protein concentrate preparation. J. Food Sci. 47: 982–988.

    Article  CAS  Google Scholar 

  • Thompson, L. U., and Serraino, M. R. 1985. Effect of germination on protein, fat, and PA concentration of rapeseed. J. Food Sci. 50: 1, 200.

    Google Scholar 

  • Thompson, L. U., and Serraino, M. R. 1986. Effect of PA reduction on rapeseed protein digestibility and amino acid absorption. J. Agric. Food Chem. 34: 468–469.

    Article  CAS  Google Scholar 

  • Thompson, L. U., and Yoon, J. 1984. Starch digestibility as affected by polyphenols and PA. J. Food Sci. 49: 1,228–1,229.

    Article  CAS  Google Scholar 

  • Turnlund, J. R.; King, J. C.; Keyes, W. R.; and Michel, M. C. 1984. A stable isotope study of Zn absorption in young men: effect of phytate and a-cellulose. Am. J. Clin. Nutr. 40: 1,071–1,077.

    CAS  Google Scholar 

  • Tzeng, Y. M. 1987. Process Development for the Production of High Quality Rapeseed (Canola) Protein Isolates by Membrane Technology. Ph.D. thesis, Univ. of Toronto.

    Google Scholar 

  • Tzeng, Y. M.; Diosady, L.; and Rubin, L. 1988a. Preparation of rapeseed protein isolate using ultrafiltration, precipitation, and diafiltration. Can. Inst. Food Sci. Tech. J. 21:419–424.

    CAS  Google Scholar 

  • Tzeng, Y. M.; Diosady, L.; and Rubin, L. 1988b. Preparation of rapeseed protein isolate by Na hexametaphosphate extraction, ultrafiltration, diafiltration, and ion exchange. J. Food Sci. 53:1, 537–1, 541.

    Article  CAS  Google Scholar 

  • Tzeng, Y. M.; Diosady, L.; and Rubin, L. 1990. Production of canola protein materials by alkaline extraction, precipitation, and membrane processing. J. Food Sci. (in press).

    Google Scholar 

  • Van Reen, R. 1953. Effects of excessive dietary Zn in the rat and the interrelationship with Cu. Arch. Biochem. Biophys. 46: 337–344.

    Article  Google Scholar 

  • Vohra, P.; Gray, G. A.; and Kratzer, F. H. 1965. PA-metal complexes. Proc. Soc. Exp. Biol. Med. 120: 447–449.

    CAS  Google Scholar 

  • Walker, K. A. 1974. Changes in PA and phytase during early development of Phaseolus vulgaris. Planta. 116: 91–96.

    CAS  Google Scholar 

  • Ward, A. T., and Reichert, R. D. 1986. Comparison of the effect of cell wall and hull fiber from canola and soybean on the bioavailability for rats of minerals, protein, and lipid. J. Nutr. 116: 233–241.

    CAS  Google Scholar 

  • Yiu, S. H.; Altosaar, I.; and Fulcher, R. G. 1983. The effects of commercial processing on the structure and microchemical organization of rapeseed. Food Microstruct 2: 165–173.

    Google Scholar 

  • Yiu, S. H.; Poon, H.; Fulcher, R. G.; and Altosaar, I. 1982. The microscopic structure and chemistry of rapeseed and its products. Food Microstruct. 1: 135–143.

    CAS  Google Scholar 

  • Yoon, J.; Thompson, L. U.; and Jenkins, D. J. A. 1983. The effect of PA on the in-vitro rate of starch digestion and blood-glucose response. Am. J. Clin. Nutr. 38: 835–842.

    CAS  Google Scholar 

  • Yoshida, T.; Shinoda, S.; Matsumoto, T.; and Watarai, S. 1982. Feed digestibility and mineral balance of the diet of young mice kept in mouse cages inside or outside an isolator using varied concentration of Na phytate. J. Nutr. Sci. Vitaminol. 28: 401–410.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thompson, L.U. (1990). Phytates in Canola/Rapeseed. In: Shahidi, F. (eds) Canola and Rapeseed. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3912-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3912-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6744-4

  • Online ISBN: 978-1-4615-3912-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics