Skip to main content

Miniband Transport and Resonant Tunneling in Superlattices

  • Chapter
Resonant Tunneling in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 277))

Abstract

Recent experimental results of miniband transport in superlattices are reviewed. The Bloch type of conduction is observed either for electron or for hole minibands. The nonlinear conduction in the superlattice direction is obtained by means of either pure electrical methods or by time resolved and spectral photoconduction data. In short period superlattices, the negative differential conductivity is different from that of a resonant tunneling between different subbands. The microscopic origin of the observed phenomena can be interpreted either in terms of Esaki-Tsu non-linear effective mass or in terms of resonant tunneling in WannierStark “localized” states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM, J. Res. Develop. 14:61, 1970

    Google Scholar 

  2. L. Esaki, L.L. Chang, W.E. Howard and V.L. Rideout, Transport properties of a GaAsGaAlAs superlattice, “Proceedings of the 11th Int. Conf. Physics Semicond.“, PWN - Polish Scientific Publishers, Warsaw, p.431, (1972)

    Google Scholar 

  3. A. Ya Shik, Transport in one-dimensional superlattices, Soviet Phys. Semicond. 7:187 (1973)

    Google Scholar 

  4. P.J. Price, Transport properties of the semiconductor superlattice, IBM J. Res. Develop. 17:39 (1973)

    Article  Google Scholar 

  5. D.L. Andersen and E.J. Aaas, Monte Carlo calculation of the electron drift velocity in GaAs with a superlattice, J. Appl. Phys. 44:3721 (1973)

    Article  ADS  Google Scholar 

  6. M. Artaki and K. Hess, Monte Carlo calculations of electron transport in GaAs/AlAs superlattices, Superlattices and Microstructures 1:489 (1985)

    Article  Google Scholar 

  7. S.R. Eric Yang and S. Das Sarma, Theory of conductivity in superlattice minibands, Phys. Rev. B 37:10090 (1988)

    Article  ADS  Google Scholar 

  8. G.M. Shmelev, I.A. Chaikovskii and Chan Min Shon, The conductivity of semiconductors with superlattices, Physica Status Solidii 76:811 (1976)

    Article  ADS  Google Scholar 

  9. J.F. Palmier and A. Chomette, Phonon-limited near equilibrium transport in a semiconductor superlattice, J. de Physique (Paris) 43:381 (1982)

    Article  Google Scholar 

  10. L. Friedman, Electron-Phonon scattering in superlattices, Phys. Rev. B32:955 (1985)

    ADS  Google Scholar 

  11. M.C. Munoz, V.R. Velasco and F. Garcia-Moliner, Electronic structure of AlAs-GaAs superlattices, Phys. Rev. B39:1786 (1989)

    ADS  Google Scholar 

  12. G. Danan et al., Optical evidence of the direct to indirect-gap transition in GaAs-AlAs short-period superlattice, Phys. Rev. B35:6207 (1987)

    ADS  Google Scholar 

  13. J. Leo and B. Movaghar, Electric-field-dependent localization in a superlattice, Phys. Rev. B38:8061 (1988)

    ADS  Google Scholar 

  14. D. Emin and C.F. Hart, Existence of Wannier-Stark localization, Phys. Rev. B36:7353 (1987-I)

    ADS  Google Scholar 

  15. A. Rabinovitch and J. Zak, Does a Bloch electron in a constant electric field oscillate ?, Physics Lett. 40A:189 (1972)

    Article  ADS  Google Scholar 

  16. J.E. Avron, Model calculation of Stark Ladder resonance, Phys. Rev. Lett. 37:1568 (1976)

    Article  ADS  Google Scholar 

  17. J.N. Churchill and F.E. Holmstrom, Comments on the existence of Bloch oscillations, Physics Letters 85A:453 (1981)

    ADS  Google Scholar 

  18. F. Bentosela, Bloch electrons in constant electric field, Commun. Math. Phys. 68:173 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Tsu and G. Dölher, Hopping conduction in a “superlattice”, Phys. Rev. B12:680 (1975)

    ADS  Google Scholar 

  20. R.F. Kazarinov and R.A. Suris, Electric and electromagnetic properties of semiconductors with superlattices, Soviet Phys. Semicond. 6:120 (1972)

    Google Scholar 

  21. D. Calecki, J.F. Palmier and A. Chomette, Hopping conduction in multiquantum well structures, J. Phys. C 17:5017 (1984)

    Article  ADS  Google Scholar 

  22. T. Weil, Theoretical study of the transport perpendicular to the layers in 1D modulated III-V semiconductors, Ph. D. Thesis, Paris 06.1987.87 PAO6 6099

    Google Scholar 

  23. J.F. Palmier, J. Dangla, E. Caquot and M. Campana, Numerical simulation of electrical transport in III-V microstructure devices, NASECODE IV, Boole Press, Dublin (1985)

    Google Scholar 

  24. B Zimmermann, Modeling of III-V semiconductor devices, Thesis, Ecole Polytechnique Fédérale, Lausanne (1989)

    Google Scholar 

  25. A. Sibille, J.F. Palmier, and F. Mollot, High field perpendicular conduction in GaAs/AlAs superlattices, Appl. Phys. Lett. 54:165 (1989)

    Article  ADS  Google Scholar 

  26. B.W. Knight and G.A. Peterson, Theory of the Gunn effect, Phys. Rev. 155:393 (1967)

    Article  ADS  Google Scholar 

  27. J.F. Palmier, H. Le Person, C. Minot and A. Sibille, Electrical transport perpendicular to superlattices built in bipolar and photoconductor structures, Journal de Physique C5:443 (1987)

    Google Scholar 

  28. M. Büttiker and H. Thomas, Current instability and domain propagation due to Bragg scattering, Phys. Rev. Lett. 38:78 (1977)

    Article  ADS  Google Scholar 

  29. B.W. Hakki, Amplification in two-valley semiconductors, J. Appl. Phys. 38:808 (1967)

    Article  ADS  Google Scholar 

  30. L. Esaki and L.L. Chang, New transport phenomenon in a semiconductor “superlattice”, Phys. Rev. Lett. 33:495 (1974)

    Article  ADS  Google Scholar 

  31. B. Deveaud, J. Shah, T.C. Damen, B. Lambert and A. Regreny, Bloch transport of electrons and holes in superlattice minibands: direct measurement by subpicosecond luminescence spectroscopy, Phys. Rev. Lett. 58:2582 (1987)

    Article  ADS  Google Scholar 

  32. B. Lambert, F. Clerot, B. Deveaud, A. Chomette, G. Talaaeff, A. Regreny and B. Sermage, Electron and hole transport properties in GaAs-A1GaAs superlattices, J. of Luminescence, 44:277 (1989)

    Article  ADS  Google Scholar 

  33. A. Chomette, B. Deveaud, A. Regreny and G. Bastard, Phys. Rev. Lett. 57:1464 (1986)

    Article  ADS  Google Scholar 

  34. K. Fujiwara, N. Tsukada, T. Nakayama and A. Nakamura, Perpendicular transport of photoexcited electrons and holes in GaAs/AlAs short period superlattices, Phys. Rev. B40:1096 (1989)

    ADS  Google Scholar 

  35. J. Benhhal, P. Lavallard, C. Gourdon, R. Grounan, M.L. Roblin, A.M. Pougnet and R. Planel, Study of vertical transport in a GaAs/AlAs superlattice by time-resolved luminescence, Journal de Physique C5: (1987)

    Google Scholar 

  36. F. Capasso and R.A. Kiehl, Resonant tunneling transistor with quantum well base and high-energy injection: a new negative differential device, J. Appl. Phys. 58:1366 (1985)

    Article  ADS  Google Scholar 

  37. J.F. Palmier, C. Minot, J.L. Liévin, F. Alexandre, J.C. Harmand, J. Dangla and D. Ankri, Observation of Bloch conduction perpendicular to interfaces in a superlattice bipolar transistor, Appl. Phys. Lett. 49:1260 (1986)

    Article  ADS  Google Scholar 

  38. A. Sibille, J.F. Palmier, C. Minot, J.C. Harmand and C. Dubon-Chevallier, Perpendicular transport in superlattice bipolar transistor (SBT), Superlatt. and Microstruct., 3:553 (1987)

    Article  ADS  Google Scholar 

  39. R.A. Davies, M.J. Kelly and T.M. Kerr, Tunneling between strongly coupled superlattices, Phys. Rev. Lett., 55:1114 (1985)

    Article  ADS  Google Scholar 

  40. A. Sibille, J.F. Palmier, F. Mollot, H. Wang and J.C. Esnault, Negative differential conductance in GaAs/AlAs superlattices, Phys. Rev. B39:6272 (1989)

    ADS  Google Scholar 

  41. A. Sibille, J.F. Palmier, H. Wang, J.C. Esnault and F. Mollot, DC and microwave negative differential conductance in GaAs/AlAs superlattices, Appl. Phys. Lett. 56:256 (1990)

    Article  ADS  Google Scholar 

  42. A. Sibille, J.F. Palmier, H. Wang and F. Mollot, Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices, Phys. Rev. Lett. 64:52 (1990)

    Article  ADS  Google Scholar 

  43. F. Capasso, K. Mohammed and A. Cho, Resonant tunneling through double barriers, perpendicular quantum transport in superlattices and their device applications, IEEE J of Quantum Electronics, QE22:1853 (1986) (Review paper)

    Google Scholar 

  44. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull and A.L. Hutchinson, New quantum photoconductivity and large photocurrent gain by effective mass filtering, Phys. Rev. Lett. 55:1152 (1985)

    Article  ADS  Google Scholar 

  45. F. Capasso, K. Mohammed and A.Y. Cho, Quantum photoconductive gain by effective mass filtering and negative conductance in superlattice per junctions, Physica 134B:487 (1985)

    Google Scholar 

  46. H.T. Grahn, H. Schneider and K. ver Klitzing, Optical studies of electric field domains in GaAs-AlxGa1-xAs superlattices, Phys. Rev. B41:2890 (1990)

    ADS  Google Scholar 

  47. E.E. Mendez, F. Agullo-Rueda and J.M. Hong, Stark localization in GaAs/GaA1As superlattices under an electric field, Phys. Rev. Lett. 60:2426 (1988)

    Article  ADS  Google Scholar 

  48. P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert and A. Regreny, Observation of the Wannier-Stark quantization in a semiconductor superlattice, Phys. Rev. Lett. 61:1639 (1988)

    Article  ADS  Google Scholar 

  49. P.L. Gourley, J.J. Wiczer, T.E. Zipperian and L.R. Dawson, Diffusion dynamics of holes in InxGa1-x As/GaAs strained layer superlattices, Appl. Phys. Lett. 49:100 (1986)

    Article  ADS  Google Scholar 

  50. A. Larsson, A. Yariv, R. Tell, J. Maserjian and S.T. Eng., Spectral and temporal characteristics of a AlGaAs/GaAs superlattice p-i-n photodetectors, Appl. Phys. Lett. 47:866 (1985)

    Article  ADS  Google Scholar 

  51. C. Minot, H. Le Person, F. Alexandre and J.F. Palmier, Photoconduction dynamics in a GaAs/A1GaAs superlattice photoconductor, Appl. Phys. Lett. 51:1626 (1987)

    Article  ADS  Google Scholar 

  52. C. Minot, H. Le Person, J.F. Palmier and R. Planel, Perpendicular transport studies in GaAs/AlAs superlattices by a time-resolved photocurrent experiment, Superlatt. and Microstruct. 6:309 (1989)

    Article  ADS  Google Scholar 

  53. H. Le Person, J.F. Palmier, C. Minot and J.C. Esnault, Electron and hole time of flight at 300K and 77K in GaAs/AlAs superlattices, Surface Science 228:441 (1990)

    Article  Google Scholar 

  54. H. Schneider and K.v. Klitzing, Thermoionic emission and Gaussian transport of holes in a GaAs/A1„Ga,_xAs multi quantum wells, Phys. Rev. B38:6160 (1988)

    ADS  Google Scholar 

  55. P. England, J.R. Hayes, E. Colas and M. Helm, Hot-electron spectroscopy of Bloch electrons in high-order minibands in semiconductor superlattices, Phys Rev. Lett. 63:1708 (1989)

    Article  ADS  Google Scholar 

  56. A.S. Vengurlekar, F. Capasso, A.L. Hutchinson, and W.T. Tsang, Miniband conduction of minority electrons and negative transconductance by quantum reflection in a superlattice transistor, Appl. Phys. Lett. 56:262 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmier, J.F. (1991). Miniband Transport and Resonant Tunneling in Superlattices. In: Chang, L.L., Mendez, E.E., Tejedor, C. (eds) Resonant Tunneling in Semiconductors. NATO ASI Series, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3846-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3846-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6716-1

  • Online ISBN: 978-1-4615-3846-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics