Skip to main content

Organization of the Cerebral Cortex in Monotremes and Marsupials

  • Chapter
Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 8B))

Abstract

The view that monotreme, marsupial, and placental orders of mammals formed an orderly progression in mammalian evolution arose in the 19th Century. Monotremes were designated the Prototheria, or first mammals, based largely on their reptilian-like reproductive practice of laying eggs, while the marsupials were designated the Metatheria, or changed mammals, and were thought to form the next stage of mammalian evolution toward placental mammals—the Eutheria or complete mammals. However, these notions of a simple hierarchy in mammalian evolution are misguided in that each of the three orders has under-gone its independent evolutionary development with perhaps major transformations having taken place within each order from the earliest forebears of that order (for reviews, see Tyndale-Biscoe, 1973; Clemens, 1977, 1979a,b; Griffiths, 1978; Archer, 1982; Dawson, 1983; Tyndale-Biscoe and Renfree, 1987). Furthermore, the reptilian-like precursors of these three mammalian orders may bear little resemblance to surviving reptiles as both the reptilian and the mammalian lines have evolved over independent courses for approximately 300 million years since the Carboniferous period (Dawson, 1983). The evolutionary line that was to lead to mammals probably underwent a reptilian-to-mammalian transition about 200 million years ago in the late Triassic Period (Fig. 1). The monotreme ancestors formed a separate line of mammalian evolution at about that time or, even earlier, emerged through the reptile-to-mammal barrier on a separate path from the therian mammals. Thus, mammalian evolutionary progress may have come from two broad stem lines, the therian mammals, from which placental and marsupial species have arisen, and the nontherian mammals that are now represented by present-day monotremes (Fig. 1). A more detailed representation of the marsupial radiation is given in Fig. 2 from Kirsch (1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbie, A. A., 1934, The brain stem and cerebellum of Echidna aculeata, Philos. Trans. R. Soc. London Ser. B 224: 1–74.

    Article  Google Scholar 

  • Abbie, A. A., 1938, The excitable cortex in the Monotremata, Aust. J. Exp. Biol. Med. Sci. 16: 143–152.

    Article  Google Scholar 

  • Abbie, A. A., 1939, The origin of the corpus callosum and the fate of the structures related to it, J. Comp. Neurol. 71: 9–44.

    Article  Google Scholar 

  • Abbie, A. A., 1940a, Cortical lamination in the Monotremata, J. Comp. Neurol. 72: 429–467.

    Article  Google Scholar 

  • Abbie, A. A., 1940b, The excitable cortex in Perameles, Sarcophilus, Dasyurus, Trichosurus, and Wallabia (Macropus), J. Comp. Neurol. 72: 469–487.

    Article  Google Scholar 

  • Adey, W. R., and Kerr, D. I. B., 1954, The cerebral representation of deep somatic sensibility in the marsupial phalanger and rabbit; an evoked potential and histological study, J. Comp. Neurol. 100: 597–626.

    Article  PubMed  CAS  Google Scholar 

  • Adrian, E. D., 1940, Double representation of the feet in the sensory cortex of the cat, J. Physiol. (London) 98: 16P - 18 P.

    Google Scholar 

  • Adrian, E. D., 1941, Afferent discharges to the cerebral cortex from peripheral sense organs, J. Physiol. (London) 100: 159–191.

    CAS  Google Scholar 

  • Aitkin, L. M., and Gates, G. R., 1983, Connections of the auditory cortex of the brush-tailed possum, Trichosurus vulpecula, Brain Behau Evol. 22: 75–88.

    Article  CAS  Google Scholar 

  • Aitkin, L. M., Calford, M. B., Kenyon, C. E., and Webster, W. R., 1981, Some facets of the organization of the principal division of the cat medial geniculate body, in: Neuronal Mechanisms of Hearing ( J. Syka and L. M. Aitkin, eds.), Plenum Press, New York, pp. 163–181.

    Chapter  Google Scholar 

  • Aitkin, L. M., Irvine, D. R. F., and Webster, W R., 1984, Central neural mechanisms of hearing, in: Handbook of Physiology, Section I, Volume III, Part 2 ( I. Darian-Smith, ed.), American Physiological Society, Bethesda, pp. 675–737.

    Google Scholar 

  • Aitkin, L. M., Irvine, D. R. F., Nelson, J. E., Merzenich, M. M., and Clarey, J. C., 1986, Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus), Brain Behau Evol. 29: 17–28.

    Article  CAS  Google Scholar 

  • Allison, T, and Goff, W. R., 1972, Electrophysiological studies of the echidna, Tachyglossus aculeatus III. Sensory and interhemispheric evoked responses, Arch. Ital. Biol. 110: 195–216.

    PubMed  CAS  Google Scholar 

  • Andres, K. H., and von During, M., 1984, The platypus bill. A structural and functional model of a pattern-like arrangement of different cutaneous sensory receptors, in: Sensory Receptor Mechanisms ( W. Hamann and A. Iggo, eds.), World Scientific Publishers, Singapore, pp. 81–88.

    Google Scholar 

  • Archer, M., 1982, A review of the origins of radiations of Australian mammals, in: Ecological Biogeography of Australia ( A. Keast, ed.), Junk, The Hague, pp. 1435–1488.

    Google Scholar 

  • Austad, S. N., 1988, The adaptable opossum, Sci. Am. 258 (2): 54–59.

    Article  Google Scholar 

  • Barrett, C., 1941, The Platypus, Robertson & Mullend, Melbourne.

    Google Scholar 

  • Bautista, N. A., and Matzke, H. A., 1965, A degeneration study of the course and extent of the pyramidal tract of the opossum, J. Comp. Neurol. 124: 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Benevento, L. A., and Ebner, F. F., 1971a, The areas and layers of corticocortical terminations in the visual cortex of the Virginia opossum, J. Comp. Neurol. 141: 157–190.

    Article  PubMed  CAS  Google Scholar 

  • Benevento, L. A., and Ebner, F. F., 1971b, The contribution of the dorsal lateral geniculate nucleus to the total pattern of thalamic terminations in striate cortex of the Virginia opossum, J. Comp. Neurol. 143: 243–260.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, R. M., and Jackson, J. C., 1974, Unit discharges in the mediodorsal nucleus of the squirrel monkey evoked by electrical stimulation of the olfactory bulb, Brain Res. 75: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R. E., Ferrington, D. G., and Rowe, M. J., 1980, Tactile neuron classes within second somatosensory area (SII) of cat cerebral cortex, J. Neurophysiol. 43: 292–309.

    PubMed  CAS  Google Scholar 

  • Benno, R. H., and Williams, T. H., 1978, Evidence for intracellular localization of alpha-fetoprotein in the developing rat brain, Brain Res. 142: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Bodemer, C. W, and Towe, A. L., 1963, Cortical localization patterns in the somatic sensory cortex of the opossum, Exp. Neurol. 8: 380–394.

    Article  Google Scholar 

  • Bodian, D., 1942, Studies on the diencephalon of the Virginia opossum. Part III. The thalamocortical projection, J. Comp. Neurol. 77: 525–575.

    Article  Google Scholar 

  • Bohringer, R. C., 1977, The somatosensory system of the platypus (Ornithorhynchus anatinus), Ph.D. thesis, University of New South Wales, Sydney.

    Google Scholar 

  • Bohringer, R. C., 1981, Cutaneous receptors in the bill of the platypus (Ornithorhynchus anatinus), Aust. Mammal. 4: 93–105.

    Google Scholar 

  • Bohringer, R. C., and Rowe, M. J., 1977, The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus), J. Comp. Neurol. 174: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Brodmann, K., 1909, Vergleichende Lokalissationslehre der Grosshirnrinde, Barth, Leipzig.

    Google Scholar 

  • Bromiley, R. B., and Brooks, C. M., 1940, Role of neocortex in regulating postural reactions of the opossum (Didelphis virginiana), J. Neurophysiol. 3: 339–346.

    Google Scholar 

  • Broomhead, A., 1974, The mediodorsal thalamic nucleus of the brush-tailed possum, Trichosurus vulpecula, J. Anat. 118: 392.

    PubMed  CAS  Google Scholar 

  • Brugge, J. F., and Reale, R. A., 1985, Auditory cortex, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 229–271.

    Google Scholar 

  • Bullier, J., 1984, Axonal bifurcation in the afferents to cortical areas of the visual system, in: Visual Neuroscience ( J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, London, pp. 239–259.

    Google Scholar 

  • Burkitt, A. N. S., 1934, The variability of the gyri and sulci in the cerebral hemispheres of Tachyglossus (echidna) aculeata, Psychiatr. Neurol. Bl. 38: 368–378.

    Google Scholar 

  • Burrell, H., 1927, The Platypus: Its Discovery, Zoological Position, Form and Characteristics, Habits, Life History Etc., Angus & Robertson, Sydney.

    Google Scholar 

  • Burton, H., 1986, The second somatosensory cortex and related areas, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 31–98.

    Google Scholar 

  • Cabana, T., and Martin, G. F., 1984, Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana), Dev. Brain Res. 15: 247–263.

    Article  Google Scholar 

  • Cabana, T, and Martin, G. F., 1985, Corticospinal development in the North-American opossum: Evidence for a sequence in the growth of cortical axons in the spinal cord and for transient

    Google Scholar 

  • projections, Dev. Brain Res. 23:69–80.

    Google Scholar 

  • Campbell, C. B. G., and Hayhow, W. R., 1971, Primary optic pathways in the echidna Tachyglossus aculeatus: An experimental degeneration study, J. Comp. Neurol. 143: 119–136.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, C. B. G., and Hayhow, W. R., 1972, Primary optic pathways in the duckbill platypus Ornithorynchus anatinus: An experimental degeneration study, J. Comp. Neurol. 145: 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Carman, J. B., Cowan, W. M., Powell, T. P. S., and Webster, K. E., 1965, A bilateral corticostriate projection, J. Neurol. Neurosurg. Psychiatry 28: 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Carreras, M., and Anderson, S. A., 1963, Functional properties of neurons of the anterior ectosylvian gyrus of the cat, J. Neurophysiol. 26: 100–126.

    PubMed  CAS  Google Scholar 

  • Cavanagh, M. E., and Møllgard, K., 1985, An immunocytochemical study of the distribution of some plasma proteins within the developing forebrain of the pig with reference to the neocortex, Dev. Brain Res. 17: 183–194.

    Article  Google Scholar 

  • Clemens, W. A., 1977, Phylogeny of the marsupials, in: Biology of Marsupials ( B. Stonehouse and D. Gilmore, eds.), Macmillan & Co., London, pp. 51–68.

    Google Scholar 

  • Clemens, W. A., 1979a, Marsupialia, in: Mesozoic Animals ( J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds.), University of California Press, Berkeley, pp. 192–220.

    Google Scholar 

  • Clemens, W. A., 1979b, Marsupialia, in: Mesozoic Animals ( J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds.), University of California Press, Berkeley, pp. 309–311.

    Google Scholar 

  • Coleman, J., Diamond, I. T., and Winer, J. A., 1977, The visual cortex of the opossum: The retrograde transport of horseradish peroxidase to the lateral geniculate and lateral posterior nuclei, Brain Res. 137: 233–252.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., Fawcett, J. W, O’Leary, D. D. M., and Stanfield, B. B., 1984, Regressive events in neurogenesis, Science 225: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, D. P., Crewther, S. G., and Sanderson, K.J., 1984, Primary visual cortex in the brush-tailed possum: Receptive field properties and corticocortical connections, Brain Behav. Evol. 24: 184–197.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, D. P., Nelson, J. E., and Crewther, S. G., 1988, Afferent input for target survival in marsupial visual development, Neurosci. Lett. 86: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, R. H., 1898, The cortical motor centres of the opossum, Didelphis virginiana, J. Physiol. (London) 22: 264–269.

    CAS  Google Scholar 

  • DAmato, C. J., and Hicks, S. P., 1978, Normal development and post-traumatic plasticity of corticospinal neurons in rats, Exp. Neurol. 60: 557–569.

    Article  PubMed  Google Scholar 

  • Darian-Smith, I., Isbister, J., Mok, H., and Yokota, T., 1966, Somatic sensory cortical projection areas excited by tactile stimulation of the cat: A triple representation, J. Physiol. (London) 182: 671–689.

    CAS  Google Scholar 

  • Dawson, T. J., 1983, Monotremes and Marsupials: The Other Mammals, Arnold, London, pp. 1–87.

    Google Scholar 

  • Diamond, I. T., 1979, The subdivisions of neocortex: A proposal to revise the traditional view of sensory, motor and association areas, Prog. Psychobiol. Physiol. Psychol. 8: 1 — 43.

    Google Scholar 

  • Diamond, I. T, and Hall, W C., 1969, Evolution of neocortex, Science 164: 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I. T., and Utley, J. D., 1963, Thalamic retrograde degeneration study of sensory cortex in opossum, J. Comp. Neurol. 120: 129–160.

    Article  PubMed  CAS  Google Scholar 

  • Divac, L, Hoist, M.-C, Nelson, J., and McKenzie, J. S., 1987a, Afférents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area, Brain Behav. Evol. 30: 303–320.

    CAS  Google Scholar 

  • Divac, I., Pettigrew, J. D., Holst, M.-C., and McKenzie, J. S., 1987b, Efferent connections of the prefrontal cortex of echidna (Tachyglossus aculeatus), Brain Behau Evol. 30: 321–327.

    Article  CAS  Google Scholar 

  • Dubois, E., 1897, Sur 1e rapport du poids de l’encéphale avec la grandeur du corps chez mammifères, Bull Soc. Anthropol. Paris [4] 8: 337–376.

    Google Scholar 

  • Ebner, F. F., 1967, Afferent connections to neocortex in the opossum (Didelphis virginiana), J. Comp. Neurol. 129: 241–268.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, F. F., 1969, A comparison of primitive forebrain organization in metatherian and eutherian mammals, Ann. N.Y. Acad. Sci. 167: 241–257.

    Article  Google Scholar 

  • Elliot Smith, G., 1902, Descriptive and illustrated catalogue of the physiological series of comparative anatomy, in: R. Coll. Surg. Mus. Cat. Physiol. Ser. Volume 2, 2nd ed., Taylor & Francis, London.

    Google Scholar 

  • Ferrington, D. G., and Rowe, M. J., 1980, Differential contributions to the coding of cutaneous vibratory information by cortical somatosensory areas I and II, J. Neurophysiol. 43: 310–331.

    PubMed  CAS  Google Scholar 

  • Fisher, A. M., Harting, J. K., Martin, G. F., and Stuber, M. I., 1969, The origin, course and termination of corticospinal fibers in the armadillo (Dasypus novemcinctus mexicanus), J. Neurol. Sci. 8: 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, G. R., Freeman, B., and Rowe, M. J., 1983, Organization of the parallel projections from Pacinian afferent fibers to somatosensory cortical areas I and II in the cat, J. Neurophysiol. 49: 75–97.

    PubMed  CAS  Google Scholar 

  • Foster, R. E., and Donoghue, J. P., 1979, Ipsilateral corticocortical connections of the SI forepaw area in the parietal cortex of the Virginia opossum, Anat. Rec. 193: 540–541.

    Google Scholar 

  • Foster, R. E., and Ebner, F. F., 1977, Interhemispheric connections between the neocortical forepaw representations in the Virginia opossum, Soc. Neurosci. Abstr. 3: 67.

    Google Scholar 

  • Foster, R. E., Donoghue, J. P., and Ebner, F. F., 1981, Laminar organization of efferent cells in the parietal cortex of the Virginia opossum, Exp. Brain Res. 43: 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J. M., 1980, The Prefrontal Cortex, Raven Press, New York.

    Google Scholar 

  • Gates, G. R., and Aitkin, L. M., 1982, Auditory cortex in the marsupial possum Trichosurus vulpecula, Hearing Res. 7: 1–11.

    Article  CAS  Google Scholar 

  • Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M., and Elliott, M. A., 1974, Peripheral auditory function in the platypus, Ornithorhynchus anatinus, J. Acoust. Soc. Am. 56: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Gerard, R. W., Marshall, W. H., and Saul, L. J., 1936, Electrical activity of the cat’s brain, Arch. Neurol. Psychiatry 36: 675–738.

    Article  Google Scholar 

  • Goldby, F., 1939a, An experimental investigation of the motor cortex and pyramidal tract of Echidna aculeata, J. Anat. 73: 509–524.

    PubMed  CAS  Google Scholar 

  • Goldby, F., 1939b, An experimental investigation of the motor cortex and its connexions in the phalanger, Trichosurus vulpecula, J. Anat. 74: 12–33.

    PubMed  CAS  Google Scholar 

  • Goldby, F., 1943, An experimental study of the thalamus in the phalanger, Trichosurus vulpecula, J. Anat. 77: 195–224.

    PubMed  CAS  Google Scholar 

  • Goldby, F., and Gamble, H. J., 1957, The reptilian cerebral hemispheres, Biol. Rev. 32: 383–420.

    Article  Google Scholar 

  • Gould, H. J., Hall, W. C., and Ebner, F. F., 1978, Connections of the visual cortex in the hedgehog (Paraechinus hypomelas), J. Comp. Neurol. 177: 445–472.

    Article  PubMed  Google Scholar 

  • Grant, T., 1984, The Platypus, New South Wales University Press, Sydney.

    Google Scholar 

  • Gray, P. A., Jr., 1924, The cortical lamination pattern of the opossum, Didelphys virginiana, J. Comp. Neurol. 37: 221–263.

    Article  Google Scholar 

  • Gregory, J. E., Iggo, A., McIntyre, A. K., and Proske, U., 1987, Electroreceptors in the platypus, Nature 326: 386–387.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, E., Iggo, A., Mclntyre, A. K., and Proske, U., 1988, Receptors in the bill of the platypus, J. Physiol. (London) 400: 349–366.

    CAS  Google Scholar 

  • Griffiths, M., 1978, The Biology of the Monotrernes, Academic Press, New York.

    Google Scholar 

  • Griffiths, M., 1988, The platypus, Sci. Am. 256: 84–90.

    Article  Google Scholar 

  • Haight, J. R., and Murray, P. F., 1981, The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: An assessment of taxonomic relationships based upon comparisons with recent forms, Brain Behau Evol. 19: 17–36.

    Article  CAS  Google Scholar 

  • Haight, J. R., and Neylon, L., 1978a, Morphological variation in the brain of the marsupial brushtailed possum, Trichosurus vulpecula, Brain Behau Evol. 15: 415–445.

    Article  Google Scholar 

  • Haight, J. R., and Neylon, L., 1978b, The organization of neocortical projections from the ventroposterior thalamic complex in the marsupial brush-tailed possum, Trichosurus vulpecula: A horseradish peroxidase study, J. Anat. 126: 459–485.

    PubMed  CAS  Google Scholar 

  • Haight, J. R., and Neylon, L., 1979, The organization of neocortical projections from the ventrolateral thalamic nucleus in the brush-tailed possum, Trichosurus vulpecula, and the problem of motor and somatic sensory convergence within the mammalian brain, J. Anat. 129: 673–694.

    PubMed  CAS  Google Scholar 

  • Haight, J. R., Sanderson, K.J., Neylon, L., and Patten, G. S., 1980, Relationships of the visual cortex in the marsupial brushtailed possum, Trichosurus vulpecula: A horseradish peroxidase and autoradiographic study, J. Anat. 131: 387–413.

    PubMed  CAS  Google Scholar 

  • Hall, R. D., and Lindholm, E. P., 1974, Organization of motor and somatosensory neocortex in the albino rat, Brain Res. 66: 23–38.

    Article  Google Scholar 

  • Harman, P. J., 1947, Quantitative analysis of the brain-isocortex relationship in Mammalia, Anat. Rec. 97: 342.

    PubMed  CAS  Google Scholar 

  • Hassler, R., and Muhs-Clement, K., 1964, Architektonischer Aufbau des sensomotorischen und Parietalen Cortex der Katze, J. Hirnforsch. 6: 377–420.

    Google Scholar 

  • Hayhow, W. R., 1967, The lateral geniculate nucleus of the marsupial phalanger, Trichosurus vulpecula. An experimental study in relation to the intranuclear optic nerve projection fields, J. Comp. Neurol. 131: 571–604.

    Article  PubMed  CAS  Google Scholar 

  • Heath, C. J., and Jones, E. G., 1971, Interhemispheric pathways in the absence of the corpus callosum, J. Anat. 109: 253–270.

    PubMed  CAS  Google Scholar 

  • Herrick, C. L., 1898, The cortical motor centres in lower mammals, J. Comp. Neurol. 8: 92–98.

    Article  Google Scholar 

  • Hines, M., 1929, The brain of Ornithorhynchus anatinus, Philos. Trans. R. Soc. London Ser. B 217: 155–259.

    Article  Google Scholar 

  • Hore, J., Phillips, C. G., and Porter, R., 1973, The effects of pyramidotomy on motor performance in the brush-tailed possum (Trichosurus vulpecula), Brain Res. 49: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London) 160: 106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289.

    PubMed  CAS  Google Scholar 

  • Hummelsheim, H., and Wiesendanger, M., 1985, Is the hindlimb representation of the rat’s cortex a “sensorimotor amalgam”? Brain Res. 346: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1982, Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2: 735–743.

    PubMed  CAS  Google Scholar 

  • Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.

    Google Scholar 

  • Jenny, A. B., 1979, Commissural projections of the cortical hand motor areas in monkeys, J. Comp. Neurol. 188: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Jerison, H. J., 1961, Quantitative analysis of evolution of the brain in mammals, Science 133: 1012–1014.

    Article  PubMed  CAS  Google Scholar 

  • Jerison, H. J., 1973, Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Johnson, J. I., 1977, Central nervous system of marsupials, in: The Biology of Marsupials ( D. Hunsaker, ed.), Academic Press, New York, pp. 157–278.

    Google Scholar 

  • Johnson, J. I., Haight, J. R., and Megirian, D., 1973, Convolutions related to sensory projections in cerebral neocortex of marsupial wombats, J. Anat. 114: 153 (abstr.).

    Google Scholar 

  • Johnson, J. I., Rubel, E. W, and Hatton, G. I., 1974, Mechanosensory projections to the cerebral cortex of sheep, J. Comp. Neurol. 158: 81–108.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., 1985, The Thalamus, Plenum Press, New York.

    Google Scholar 

  • Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.

    Google Scholar 

  • Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol. 75: 391–438.

    Article  Google Scholar 

  • Joschko, M. A., and Sanderson, K. J., 1987, Cortico-cortical connections of the motor cortex in the brushtailed possum (Trichosurus vulpecula), J. Anat. 150: 31–42.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1980, A comparative survey of visual cortex organization in mammals, in: Comparative Neurology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 483–502.

    Chapter  Google Scholar 

  • Kato, H., Bishop, P. O., and Orban, G. A., 1978, Hypercomplex and simple/complex cell classifications in cat striate cortex, J. Neurophysiol. 41: 1071–1095.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Ebner, F. F., 1972, Two different types of thalamocortical projections to a single cortical area in mammals, Brain Behav. Evol. 6: 141–169.

    Article  PubMed  CAS  Google Scholar 

  • Killackey, H., and Ebner, F., 1973, Convergent projection of three separate thalamic nuclei on to a single cortical area, Science 179: 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, J. A. W, 1977, The classification of marsupials, in: The Biology of Marsupials ( D. Hunsaker, ed.), Academic Press, New York, pp. 1–50.

    Google Scholar 

  • Lende, R. A., 1963a, Sensory representation in the cerebral cortex of the opossum (Didelphis virginiana), J. Comp. Neurol. 121: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., 1963b, Motor representation in the cerebral cortex of the opossum (Didelphis virginiana), J. Comp. Neurol. 121: 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., 1963c, Cerebral cortex: A sensorimotor amalgam in the Marsupialia, Science 141: 730–732.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., 1964, Representation in the cerebral cortex of a primitive mammal. Sensorimotor, visual, and auditory fields in the echidna (Tachyglossus aculeatus), J. Neurophysiol. 27: 37–48.

    PubMed  CAS  Google Scholar 

  • Lende, R. A., 1969, A comparative approach to the neocortex: Localization in monotremes, marsupials and insectivores, Ann. N.Y. Acad. Sci. 167: 262–276.

    Article  Google Scholar 

  • Lende, R. A., and Sadler, K. M., 1967, Sensory and motor areas in neocortex of hedgehog (Erinaceus), Brain Res. 5: 390–405.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., and Woolsey, C. N., 1956, Sensory and motor localization in cerebral cortex of porcupine (Erithizon dorsatum), J. Neurophysiol. 19: 544–563.

    PubMed  CAS  Google Scholar 

  • Leonard, C. M., 1972, The connections of the dorsomedial nuclei, Brain Behau Evol. 6: 524–541.

    Article  CAS  Google Scholar 

  • LeVay, S., and Sherk, H., 1981, The visual claustrum of the cat. I. Structure and connections, J. Neurosci. 1: 956–980.

    PubMed  CAS  Google Scholar 

  • Lyne, G., 1967, Marsupials and Monotremes cf Australia, Angus & Robertson, Sydney.

    Google Scholar 

  • Magalhäes-Castro, B., and Saraiva, P. E. S., 1971, Sensory and motor representation in the cerebral cortex of the marsupial Didelphis azarae azarae, Brain Res. 34: 291–299.

    Article  PubMed  Google Scholar 

  • Marshall, W. H., Woolsey, C. N., and Bard, P., 1941, Observations on cortical somatic sensory mechanisms of cat and monkey, J. Neurophysiol. 4: 1–24.

    Google Scholar 

  • Martin, C. J., 1898, Cortical localisation in Ornithorhynchus, J. Physiol. (London) (Suppl.) 23: 383–385.

    CAS  Google Scholar 

  • Martin, G. F., Megirian, D., and Roebuck, A., 1970, The corticospinal tract of the marsupial phalanger (Trichosurus vulpecula), J. Comp. Neurol. 139: 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. F., Megirian, D., and Conner, J. B., 1972, The origin, course and termination of the corticospinal tracts of the Tasmanian potoroo (Potorous apicalis), J. Anat. 111: 263–281.

    PubMed  CAS  Google Scholar 

  • Martin, G. F., Beals, J. K., Culberson, J. C., Dom, R., and Humbertson, A. O., 1978, Observations on the development of brainstem-spinal systems in the North American opossum, J. Comp. Neurol. 181: 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., and Brugge, J. F., 1973, Representation of the cochlear partition on the superior temporal plane of the macaque monkey, Brain Res. 50: 275–296.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Knight, P. L., and Roth, G. L., 1975, Representation of cochlea within primary auditory cortex in the cat, J. Neurophysiol. 38: 231–249.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., and Roth, G. L., 1976, Auditory cortex in the grey squirrel: Tonotopic organization and architectonic fields, J. Comp. Neurol. 166: 387–401.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J., 1981, A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals, Brain Behau Evol. 18: 60–71.

    Article  CAS  Google Scholar 

  • Moeller, H., 1973, Zur Evolutions höhe des Marsupialia gehirns, Zool. Jahrb. Abt. Anat. Ontog. Tiere 91: 434–448.

    Google Scholar 

  • Molliver, M. E., Kostovic, I., and Van der Loos, H., 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50: 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Morest, D. K., 1964, The neuronal architecture of the medial geniculate body in the cat, J. Anat. 98: 611–630.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatosensory cortex, J. Neurophysiol. 20: 408–434.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain ( G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, Mass., pp. 7–50.

    Google Scholar 

  • Mountcastle, V. B., 1986, The neural mechanisms of cognitive function can now be studied directly, Trends Neurosci. 9: 505–508.

    Article  Google Scholar 

  • Murphy, E. H., and Berman, N., 1979, The rabbit and the cat: A comparison of some features of response properties of single cells in the primary visual cortex, J. Comp. Neurol. 188: 401–428.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J. E., 1987, The early development of the eye of the pouch-young of the marsupial Dasyurus hallucatus, Anat. Embryol. 175: 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J. E., and Stephan, H., 1982, Encephalization in Australian marsupials, in: Australian Carnivorous Marsupials ( M. Archer, ed.), Royal Zoological Society of New South Wales, Sydney, pp. 699–706.

    Google Scholar 

  • Norita, M., 1983, Claustral neurons projecting to the visual cortical areas in the cat: A retrograde double labelling study, Neurosci. Lett 36: 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Ogren, M., and Hendrickson, A., 1976, Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection, Exp. Neurol. 53: 780–800.

    Article  PubMed  CAS  Google Scholar 

  • Packer, A. D., 1941, An experimental investigation of the visual system in the phalanger, Trichosurus vulpecula, J. Anat. 75: 309–329.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., and Yeterian, E. H., 1985, Architecture and connections of cortical association areas, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 3–61.

    Google Scholar 

  • Penfield, N., and Boldrey, E., 1937, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain 60: 389–443.

    Article  Google Scholar 

  • Petras, J. M., 1969, Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores, Ann. N.Y. Acad. Sci. 167: 469–505.

    Article  Google Scholar 

  • Pirlot, P., and Nelson, J., 1978, Volumetric analyses of monotreme brains, Aust. Zool. 20: 171–179.

    Google Scholar 

  • Porter, R., 1955, Antidromic conduction of volleys in the pyramidal tract, J. Neurophysiol. 18: 138–150.

    PubMed  CAS  Google Scholar 

  • Potter, H., and Nauta, W. J. H., 1979, A note on the problem of olfactory associations of the orbitofrontal cortex in the monkey, Neuroscience 4: 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Poulton, E. B., 1885, On the tactile terminal organ and other structures in the bill of Ornithorhynchus, J. Physiol. (London) 5: 15–16.

    Google Scholar 

  • Poulton, E. B., 1894, The structure of the bill and hairs of Ornithorhynchus paradoxus with a discussion of the homologies and origin of mammalian hair, Q. J. Microsc. Sci. 36: 143–199.

    Google Scholar 

  • Powell, T. P. S., Cowan, W. M., and Raisman, G., 1965, The central olfactory connections, J. Anat. 99: 791.

    PubMed  CAS  Google Scholar 

  • Pubols, B. H., 1968, Retrograde degeneration study of somatic sensory thalamocortical connections in brain of Virginia opossum, Brain Res. 7: 232–251.

    Article  PubMed  Google Scholar 

  • Pubols, B. H., 1977, The second somatic sensory area (SmII) of opossum neocortex, J. Comp. Neurol. 174: 71–78.

    Article  PubMed  Google Scholar 

  • Pubols, B. H., Jr., and Pubols, L. M., 1971, Somatotopic organisation of spider monkey somatic sensory cerebral cortex, J. Comp. Neurol. 141: 63–76.

    Article  PubMed  Google Scholar 

  • Pubols, B. H., Donovick, P. J., and Pubols, L. M., 1973, Opossum trigeminal afferents associated with vibrissal and rhinarial mechanoreceptors, Brain Behav. Evol. 7: 360–381.

    Article  PubMed  Google Scholar 

  • Pubols, B. H., Pubols, L. M., Dipette, D. J., and Sheely, J. C., 1976, Opossum somatic sensory cortex: A microelectrode mapping study, J. Comp. Neurol. 165: 229–246.

    Article  PubMed  Google Scholar 

  • Ravizza, R., Heffner, H., and Masterton, B., 1969, Hearing in primitive mammals. I: Opossum (Didelphis virginiana), J. Aud. Res. 9: 1–7.

    Google Scholar 

  • Reale, R. A., and Imig, T. J., 1980, Tonotopic organization in auditory cortex of the cat, J. Comp. Neurol. 192: 265–292.

    Article  PubMed  CAS  Google Scholar 

  • Rees, S., and Hore, J., 1970, The motor cortex of the brush-tailed possum (Trichosurus vulpecula): Motor representation, motor function and the pyramidal tract, Brain Res. 20: 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Regidor, J., and Divac, I., 1987, Architectonics of the thalamus in the echidna (Tachyglossus aculeatus): Search for the mediodorsal nucleus, Brain Behav. Evol. 30: 328–341.

    Article  PubMed  CAS  Google Scholar 

  • Renfree, M. B., Holt, A. B., Green, S. W., Carr, J. P., and Cheek, D. B., 1982, Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life, Brain Behav. Evol. 20: 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, M. L., and Saunders, N. R., 1988, Differentiation of the neocortex, in: The Developing Marsupial ( C. H. Tyndale-Biscoe and P. A. Janssens, eds.), Springer-Verlag, Berlin, pp. 101–116.

    Chapter  Google Scholar 

  • Reynolds, M. L., Cavanagh, M. E., Dziegieliewska, K. M., Hinds, L. A., Saunders, N R., and Tyndale-Biscoe, C. H., 1985, Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). An accessible model of neocortical differentiation, Anat. Embryol. 173: 81–94.

    Article  PubMed  CAS  Google Scholar 

  • Rezak, M., and Benevento, L. A., 1979, A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey, Brain Res. 167: 19–40.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, C. J., and Burton, H., 1980, Somatotopographic organization in second somatosensory area of M. fascicularis, J. Comp. Neurol. 192: 43–68.

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Miranda, C. E., Linden, R., Volchan, E., Lent, R., and Bombardieri, R., 1976, Receptive field properties of single units in the opossum striate cortex, Brain Res. 104: 197–219.

    Article  PubMed  CAS  Google Scholar 

  • Rockel, A. J., Heath, C. J., and Jones, E. G., 1972, Afferent connections to the diencephalon in the marsupial phalanger and the question of sensory convergence in the ‘posterior group’ of the thalamus, J. Comp. Neurol. 145: 105–130.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. E., and Woolsey, C. N., 1948, The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat, Proc. Assoc. Res. Nerv. Ment. Dis. 27: 210–232.

    Google Scholar 

  • Rowe, M. J., Ferrington, D. G., Fisher, G. R., and Freeman, B., 1985, Parallel processing and distributed coding for tactile vibratory information within the sensory cortex, in: Development, Organization and Processing in Somatosensory Pathways ( M.J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 247–258.

    Google Scholar 

  • Royce, G. J., Ward, J. P., Bade, B. B., and Harting, J. K., 1975, Retinogeniculate pathways in two marsupial opossums, Didelphis virginiana and Marmosa mitis, Anat. Rec. 181: 467–468.

    Google Scholar 

  • Royce, G. J., Ward, J. P., and Harting, J. K., 1976, Retinofugal pathways in two marsupials, J. Comp. Neurol. 170: 391–414.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K. J., Pearson, L. J., and Dixon, P. G., 1978, Altered retinal projections in brush-tailed possum, Trichosurus vulpecula, following removal of one eye, J. Comp. Neurol. 180: 841–868.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K.J., Haight, J. R., and Pearson, L. J., 1980, Transneuronal transport of tritiated fucose and proline in the visual pathways of the brushtailed possum, Trichosurus vulpecula, Neurosci. Lett. 20: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K. J., Welker, W., and Shambes, G. M., 1984, Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats, Brain Res. 292: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Sanides, F., 1972, Representation in the cerebral cortex and its areal lamination patterns, in: Structure and Function of the Nervous System, Volume 5 ( G. H. Bourne, ed.), Academic Press, New York, pp. 329–453.

    Google Scholar 

  • Saraiva, P., and Magalhäes-Castro, B., 1975, Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus), Brain Res. 90: 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, N. R., 1985, Plasma proteins and cerebral cortical development, in: Development, Organization, and Processing in Somatosensory Pathways ( M. J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 79–86.

    Google Scholar 

  • Scheich, H., Langner, G., Tidemann, C., Coles, R. B., and Guppy, A., 1986, Electroreception and electrolocation in platypus, Nature 319: 401–402.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, E., 1910, Preliminary note upon the cell lamination of the cerebral cortex of the echidna, with an enumeration of the fibres in the cranial nerves, Proc. R. Soc. Med. Ser. B 82: 113–123.

    Article  Google Scholar 

  • Sherk, H., 1986, The claustrum and the cerebral cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 467–499.

    Google Scholar 

  • Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41: 798–820.

    PubMed  CAS  Google Scholar 

  • Snell, O., 1891, Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten, Arch. Psychiatr. Nervenkr. 23: 436–446.

    Article  Google Scholar 

  • Sousa, R., Aglai, P. B., Gattass, R., and Oswaldo-Cruz, E., 1978, The projection of the opossum’s visual field on the cerebral cortex, J. Comp. Neurol. 177: 569–588.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons, Nature 298: 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, H., Bauchot, R., and Andy, O. J., 1970, Data on size of the brain and various parts in insectivores and primates, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton, New York, pp. 289–297.

    Google Scholar 

  • Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.

    Book  Google Scholar 

  • Suga, N., and Jen, P. H. S., 1976, Disproportionate tonotopic representation for processing CF-FM sonar signals in the moustache bat auditory cortex, Science 194: 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Tyndale-Biscoe, C. H., 1973, The Life of Marsupials, Arnold, London.

    Google Scholar 

  • Tyndale-Biscoe, C. H., and Renfree, M., 1987, Reproductive Physiology of Marsupials, Cambridge University Press, London.

    Book  Google Scholar 

  • Ulinski, P. S., 1984, Thalamic projections to the somatosensory cortex of the echidna, Tachyglossus aculeatus, J. Comp. Neurol. 229: 153–170.

    Article  PubMed  CAS  Google Scholar 

  • Van der Loos, H., and Welker, E., 1985, Development and plasticity of somatosensory brain maps, in: Development, Organization, and Processing in Somatosensory Pathways ( M. J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 53–67.

    Google Scholar 

  • Van Essen, D. C., 1979, Visual areas of the mammalian cerebral cortex, Annu. Rev. Neurosci. 2: 227–263.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.

    Article  Google Scholar 

  • Vogt, C., and Vogt, O., 1906, Zur Kentniss der elektrisch erregbaren Hirnrindgebiet bei der Säugetieren, J. Psychol. Neurol. 8: 277–456.

    Google Scholar 

  • von Bonin, G., 1937, Brain weight and body weight in mammals, J. Gen. Psychol. 16: 379–389.

    Article  Google Scholar 

  • Ward, L., and Watson, C. R. R., 1973, An experimental study of the ventrolateral nucleus of the brush-tailed possum, J. Anat. 116: 472.

    PubMed  CAS  Google Scholar 

  • Welker, C., 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166: 173–190.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W, and Lende, R. A., 1980, Thalamocortical relationships in echidna (Tachyglossus aculeatus), in: Comparative Neurology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 449–481.

    Chapter  Google Scholar 

  • Welker, W. I., and Seidenstein, S., 1959, Somatic sensory representation in the cerebral cortex of the racoon (Procyon lotor), J. Comp. Neurol. 111: 469–502.

    Article  PubMed  CAS  Google Scholar 

  • Weller, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula, Brain Res. 43: 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Weller, W. L., and Haight, J. R., 1973, Barrels and somatotopy in SI neocortex of the brush-tailed possum, J. Anat. 116: 474.

    PubMed  CAS  Google Scholar 

  • Weller, W. L., Haight, J. R., Neylon, L., and Johnson, J. L, 1977, A re-assessment of the mechanoreceptor projections to cerebral neocortex in marsupial wallabies (Thylogale), J. Anat. 124: 531–532.

    Google Scholar 

  • Werner, G., and Whitsel, B. L., 1973, Functional organisation of the somatosensory cortex, in: Handbook of Sensory Physiology. II. Somatosensory System ( A. Iggo, ed.), Springer-Verlag, Berlin, pp. 621–700.

    Google Scholar 

  • Whitsel, B. L., Petrucelli, L. M., and Werner, G., 1969, Symmetry and connectivity in the map of the body surface in somatosensory area II of primates, J. Neurophysiol. 32: 170–183.

    PubMed  CAS  Google Scholar 

  • Wilson, J. T., and Martin, C. J., 1893, On the peculiar rod-like tactile organs in the integument and mucous membrane of the muzzle of Ornithorynchus, in: The Macleay Memorial Volume ( J. J. Fisher, ed.), Linn. Soc. N.S W, Sydney, pp. 190–200.

    Google Scholar 

  • Wilson, J. T., and Martin, C. J., 1894, Further observations upon the anatomy of the integumentary structures in the muzzle of Ornithorhynchus, Proc. Linn. Soc. N.S.W. Ser. 2 9: 660–681.

    Google Scholar 

  • Woolsey, C. N., 1952, Patterns of localization in sensory and motor areas of the cerebral cortex, in: Biology of Mental Health and Disease, Hoeber, New York, pp. 193–206.

    Google Scholar 

  • Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior ( H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.

    Google Scholar 

  • Woolsey, C. N., 1964, Cortical localization as defined by evoked potential and electrical stimulation studies, in: Cerebral Localization and Organization ( G. Schaltenbrand and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 17–32.

    Google Scholar 

  • Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals, Surgery 19: 684–702.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectural units, Brain Res. 17: 205–242.

    Article  PubMed  CAS  Google Scholar 

  • Zecevic, N. R., and Molliver, M. E., 1978, The origin of the monoaminergic innervation of immature rat neocortex: An ultrastructural analysis following lesions, Brain Res. 150: 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Ziehen, T., 1897, Das Centralnervensystem der Monotremen und Marsupialier. I. Theil: Makroskopische Anatomie, in: Zoologische Forschungsreisen in Australien und dem Malayischen Archipel (R. Semon, ed.), Volume 3, Denkschiften der medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena, Fischer, Jena, 6: 677–728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rowe, M. (1990). Organization of the Cerebral Cortex in Monotremes and Marsupials. In: Jones, E.G., Peters, A. (eds) Cerebral Cortex. Cerebral Cortex, vol 8B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3824-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3824-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6706-2

  • Online ISBN: 978-1-4615-3824-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics