Skip to main content

Conservation of Genetic Variation in Plants—The Importance of Population Size and Gene Flow

  • Chapter
Ecological Principles of Nature Conservation

Abstract

Recently, many authors have focused on the role of population genetics in the management and conservation of threatened species (see Soulé & Wilcox, 1980; Frankel & Soulé, 1981; Schonewald-Cox et al., 1983; Soulé, 1985, 1987 for reviews). There is one concept in the current theoretical framework of conservation biology that includes genetical aspects—Minimum Viable Population size (hereafter MVP). Conservation biologists have for a long time known that the smaller the population, the more susceptible it is to extinction by various causes. The MVP concept constitutes one of the major foci of current conservation biology (Simberloff, 1988) because the increasing fragmentation of the landscape caused by man will in the future reduce population size. Many of the factors that affect population dynamics, and thus, potentially, the likelihood of extinction, contain elements of uncertainty. Shaffer (1981) summarized the sources of uncertainty into four classes: demographic and environmental stochasticity, natural catastrophes and genetic stocliasticity. Different sources of uncertainty interact in extremely complex ways (Shaffer, 1987). We will in this chapter review the current knowledge of the conservation biology of plants with the focus on genetic stochasticity, i.e. genetics of small populations, and gene flow among populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf, F.W., Knudsen, K.L. & Blake, G.M. (1982). Frequencies of null alleles at enzyme loci in natural populations of ponderosa and red pine. Genetics, 100, 497–504.

    Google Scholar 

  • Antlfinger, A.E. (1982). Genetic neighborhood structure of the salt marsh composite Borrichia frutescens. J. Hered., 73, 128–132.

    Google Scholar 

  • Babbel, G.R. & Selander, R.K. (1974). Genetic variability in edaphically restricted and widespread plant species. Evolution, 28, 619–630.

    Google Scholar 

  • Bannister, M.H. (1965). Variation in the breeding system of Pinus radiata. In The Genetics of Colonizing Species, ed. H.G. Baker & G.L. Stebbins. Academic Press, New York, pp. 353–372.

    Google Scholar 

  • Banyard, B.J. & James, S.H. (1979). Biosystematic studies in the Stylidium crassifolium species complex (Stylidiaceae). Aust. J. Bot, 27, 27–37.

    Google Scholar 

  • Banyard, B.J. & James, S.H. (1979). Biosystematic studies in the Stylidium crassifolium species complex (Stylidiaceae). Aust. J. Bot, 27, 27–37.

    Google Scholar 

  • Bayer, R.J. (1988). Patterns of isozyme variation in western North American Antennaria (Asteraceae: Inuleae), I. Sexual species of sect. Dioicae. Syst. Bot., 13, 525–537.

    Google Scholar 

  • Bayer, R.J., La Duke, J.C. & Crawford, D.J. (1987). Isozyme variation in Trillium nivale (Liliaceae). Can. J. Bot, 65, 2250–2254.

    Google Scholar 

  • Beattie, A.J. & Culver, D.C. (1979). Neighbourhood size in Viola. Evolution, 33, 1226–1229.

    Google Scholar 

  • Beihassen, E., Dockes, A.C., Gliddon, C. & Gouyon, P.H. (1987). Gene dispersal and neighborhood in a gynodioecious species, the case of Thymus vulgaris L. Genet Sel. Evol., 19, 307–320.

    Google Scholar 

  • Berlocher, S.H. (1984). Genetic changes coinciding with the colonization of California by the walnut husk fly Rhagoletis complete. Evolution, 38, 906–918.

    Google Scholar 

  • Bos, M., Harmens, H. & Vrieling, K. (1986). Gene flow in Plantago, I. Gene flow and neighbourhood size in P. lanceolata. Heredity, 56, 43–54.

    Google Scholar 

  • Bradshaw, A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet, 13, 115–155.

    Google Scholar 

  • Bush, R.M., Smouse, P.E. & Ledig, F.T. (1987). The fitness consequences of multiple-locus heterozygosity: the relationship between heterozygosity and growth rate in pitch pine (Pinus rigida Mill.). Evolution, 41, 787–798.

    Google Scholar 

  • Cahalan, C. & Gliddon, C (1985). Genetic neighbourhood size in Primula vulgaris. Heredity, 54, 65–70.

    Google Scholar 

  • Campbell, D.R. & Waser, N.M. (1987). The evolution of plant mating systems: multilocus simulations of pollen dispersal. Amer. Nat., 129, 593–609.

    Google Scholar 

  • Charlesworth, D. & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst., 18, 237–268.

    Google Scholar 

  • Chesser, R.K. (1983). Isolation by distance: relationship to the management of genetic resources. In Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, ed. C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde & L. Thomas. Benjamin Cummings, Menlo Park, California, pp. 66–77.

    Google Scholar 

  • Crawford, D.J. & Whitkus, R. (1988). Allozyme divergence and the mode of speciation for Coreopsis gigantea and C. maritima (Compositae). Syst. Bot., 13, 256–264.

    Google Scholar 

  • Crawford, D.J., Ornduff, R. & Vasey, M.C. (1985). Allozyme variation within and between Lasthenia minor and its derivate species, L. maritima (Asteraceae). Amer. J. Bot, 75, 1177–1184.

    Google Scholar 

  • Crawford, T.J. (1984). What is a population? In Evolutionary Ecology, ed. B. Shorrocks. Symp. Brit. Ecol. Soc., 23rd. Blackwell Scientific Publications, Oxford, pp. 135–173.

    Google Scholar 

  • Crow, J.F. & Aoki, K. (1984). Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl Acad. Sci. USA, 81, 6073–6077.

    Google Scholar 

  • Cwynar, L.C. & McDonald, G.M. (1987). Geographical variation of lodgepole pine in relation to population history. Amer. Nat., 123, 463–469.

    Google Scholar 

  • Dobzhansky, T. & Wright, S. (1941). Genetics of natural populations, Vol. V. Relations between the mutation rate and the accumulation of lethals in populations of Drosophila pseudoobscur a. Genetics, 26, 23–51.

    Google Scholar 

  • Ehrlich, P.R. (1983). Genetics and the extinctions of butterfly populations. In Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, ed. C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde & L. Thomas. Benjamin Cummings, Menlo Park, California, pp. 152–163.

    Google Scholar 

  • Ehrlich, P.R. & Raven, P.H. (1969). Differentiation of populations. Science, N.Y., 165, 1228–1232.

    Google Scholar 

  • Ellstrand, N.C. & Marshall, D.L. (1985). Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Amer. Nat., 126, 606–616.

    Google Scholar 

  • Endler, J.A. (1986). Natural Selection in the Wild. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Falconer, D.S. (1981). Introduction to Quantitative Genetics. Longman, London.

    Google Scholar 

  • Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Clarendon, Oxford.

    Google Scholar 

  • Frankel, O.H. & Soulé, M.E. (1981). Conservation and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franklin, I.R. (1980). Evolutionary changes in small populations. In Conservation Biology. An Evolutionary — Ecological Perspective, ed. M.E. Soulé & B.A. Wilcox. Sinauer Associates, Sunderland, Massachusetts, pp. 135–149.

    Google Scholar 

  • Gottlieb, L.D. (1973). Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeria. Amer. J. Bot., 60, 545–553.

    Google Scholar 

  • Gottlieb, L.D. (1974). Genetic configuration of the origin of Clarkia Ungulata. Evolution, 28, 244–250.

    Google Scholar 

  • Gottlieb, L.D. & Pilz, G. (1976). Genetic similarity between Gaura longiflora and its obligately outcrossing derivative G. demareei. Syst. Bot, 1, 181–187.

    Google Scholar 

  • Gottlieb, L.D., Warwick, S.I. & Ford, V.S. (1985). Morphological and electrophoretic divergence between Layia discoidea and L. glandulosa. Syst. Bot., 10, 484–495.

    Google Scholar 

  • Govindaraju, D.R. (1988a). Relationship between dispersal ability and level of gene flow in plants. Oikos, 52, 31–35.

    Google Scholar 

  • Govindaraju, D.R. (1988b). Life history, neighbourhood sizes, and variance structure in some North American conifers. Biol. J. Linn. Soc., 35, 69–78.

    Google Scholar 

  • Guríes, R.P. & Ledig, F.T. (1982). Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution, 36, 387–402.

    Google Scholar 

  • Haldane, J.B.S. (1930). A mathematical theory of natural and artificial selection, Part IV. Isolation. Proc. Camb. Phil. Soc., 26, 220–230.

    Google Scholar 

  • Haller, J.R. (1986). Taxonomy and relationships of the mainland and island populations of Pinus torreyana (Pinaceae). Syst. Bot, 11, 39–50.

    Google Scholar 

  • Hamrick, J.L. (1983). The distribution of genetic variation within and among natural plant populations. In Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, ed. C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde & L. Thomas. Benjamin Cummings, Menlo Park, California, pp. 501–508.

    Google Scholar 

  • Hamrick, J.L. & Allard, R.W. (1972). Microgeographical variation in allozyme frequencies in Avena barbata. Proc. Natl Acad. Sci. USA, 69, 2100–2104.

    Google Scholar 

  • Hamrick, J.L. & Godt, M.J. (1990). Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources, ed. A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir. Sinauer Associates, Sunderland, Massachusetts, pp. 43–63.

    Google Scholar 

  • Hamrick, J.L. & Murawski, D.A. (1990). The breeding structure of tropical tree populations. Plant Species Biol, 5, 157–160.

    Google Scholar 

  • Hamrick, J.L., Linhart, Y.B. & Mitton, J.B. (1979). Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst., 10, 173–200.

    Google Scholar 

  • Handel, S.N. (1976). Restricted pollen flow of two woodland herbs determined by neutron-activation analysis. Nature, Lond., 260, 422–423.

    Google Scholar 

  • Handel, S.N. (1985). Pollen flow patterns and the creation of local genotypic variation. In Structure and Functioning of Plant Populations, 2. Phenotypic and Genotypic Variaton in Plant Populations, ed. J. Haeck & J.W. Wolden-dorp. North-Holland Publishing Company, Amsterdam, pp. 251–265.

    Google Scholar 

  • Harder, L.D., Thomson, J.D., Cruzan, M.B. & Unnash, R.S. (1985). Sexual reproduction and variation in floral morphology in an ephemeral vernal lily, Erythronium americanum. Oecologia (Berl.), 67, 286–291.

    Google Scholar 

  • Hedrick, P.W. & Holden, L. (1979). Hitch-hiking: An alternative to coadaptation for barley and slender wild oat examples. Heredity, 43, 79–86.

    Google Scholar 

  • Heywood, J.S. (1986). The effect of plant size variation on genetic drift in populations of annuals. Amer. Nat., 127, 851–861.

    Google Scholar 

  • Husband, B.C. & Barrett, S.C.H. (1989). Population size and genetic diversity in populations of Eichhornia paniculata. Amer. J. Bot., 76, 148.

    Google Scholar 

  • Jain, S.K. (1976). The evolution of inbreeding in plants. Ann. Rev. Ecol. Syst., 7, 469–495.

    Google Scholar 

  • Johannsen, W. (1911). The genotypic concept of heredity. Amer. Nat., 45, 129–159.

    Google Scholar 

  • Karron, J.D., Linhart, Y.B., Chaulk, C.A. & Robertson, C.A. (1988). Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Amer, J. Bot, 75, 1114–1119.

    Google Scholar 

  • Kephart, S. (1981). Breeding systems in Asclepias incarnata L., A. syriaca L. Amer. J. Bot., 68, 226–232.

    Google Scholar 

  • Kerster, H.W. & Levin, D.A. (1968). Neighbourhood size in Lithospermum carolinense. Genetics, 60, 577–587.

    Google Scholar 

  • Kesseli, R.V. & Jain, S.K. (1984). New variation and biosystematic patterns detected by allozyme and morphological comparisons in Limnanthes sect. Reflexae (Limnanthaceae). Pl. Syst. Evol., 147, 133–165.

    Google Scholar 

  • Kimura, M. & Crow, F.J. (1963a). The measurement of effective population number. Evolution, 17, 279–288.

    Google Scholar 

  • Kimura, M. & Crow, F.J. (1963b). On the maximum avoidance of inbreeding. Genet. Res., 4, 399–415.

    Google Scholar 

  • Knowles, P. & Grant, M.C. (1981). Genetic patterns associated with growth variability in ponderosa pine. Amer. J. Bot., 68, 942–946.

    Google Scholar 

  • Knowles, P. & Mitton, J.B. (1980). Genetic heterozygosity and radial growth variability in Pinus contorta. Silvae Genet., 29, 114–118.

    Google Scholar 

  • Koptur, S. (1984). Outcrossing and pollinator limitation of fruit set: breeding systems of neotropical Inga trees (Fabaceae: Mimosoideae). Evolution, 38, 1130 - 1143.

    Google Scholar 

  • Kruckeberg, A.R. (1957). Variation in fertility of hybrids between isolated populations of serpentine species, Streptanthus glandulosus Hook. Evolution, 11, 185–211.

    Google Scholar 

  • Lande, R. & Barrowclough, G.F. (1987). Effective population size, genetic variation, and their use in population management. In Viable Populations for Conservation, ed. M.E. Soulé. Cambridge University Press, Cambridge, pp. 87–123.

    Google Scholar 

  • Lande, R. & Schemske, D.W. (1985). The evolution of self-fertilization and inbreeding depression in plants, I. Genetic models. Evolution, 39, 24–40.

    Google Scholar 

  • Ledig, F.T. (1986). Heterozygosity, heterosis, and fitness in outbreeding plants. In Conservation Biology. The Science of Scarcity and Diversity, ed. M.E. Soulé. Sinauer Associates, Sunderland, Massachusetts, pp. 77–104.

    Google Scholar 

  • Ledig, F.T. & Conkle, M.T. (1983). Gene diversity and genetic structure in a narrow endemic Torrey pine (Pinus torreyana Parry ex. Carr). Evolution, 37, 79–85.

    Google Scholar 

  • Ledig, F.T., Guries, R.P. & Bonefeld, B.A. (1983). The relation of growth to heterozygosity in pitch pine. Evolution, 37, 1227–1238.

    Google Scholar 

  • Levin, D.A. (1981). Dispersal vs gene flow in plants. Ann. Missouri Bot. Gard., 68, 233–253.

    Google Scholar 

  • Levin, D.A. (1983). Plant parentage: an alternative view of the breeding structure of populations. In Population Biology-Retrospect and Prospect, ed. C.E. King & P.S. Dawson. Columbia University Press, New York, pp. 171–188.

    Google Scholar 

  • Levin, D.A. (1984). Inbreeding depression and proximity-dependent crossing success in Phlox drummondii. Evolution, 38, 116–127.

    Google Scholar 

  • Levin, D.A. (1988). Local differentiation and the breeding structure of plant populations. In Plant Evolutionary Biology, ed. L.D. Gottlieb & S.K. Jain. Chapman & Hall, London, pp. 305–329.

    Google Scholar 

  • Levin, D.A. & Kerster, H.W. (1968). Local gene dispersal in Phlox. Evolution, 22, 130–139.

    Google Scholar 

  • Levin, D.A. & Kerster, H.W. (1969). Density-dependent gene dispersal in Liatris. Amer. Nat., 103, 61–74.

    Google Scholar 

  • Levin, D.A. & Kerster, H.W. (1974). Gene flow in seed plants. Evol. Biol, 7, 139–220.

    Google Scholar 

  • Levin, D.A., Ritter, K. & Ellstrand, N.C. (1979). Protein polymorphism in the narrow endemic Oenothera organensis. Evolution, 33, 534–542.

    Google Scholar 

  • Levy, M. & Levin, D.A. (1975). Genetic heterozygozity and variation in permanent translocation heterozygotes of the Oenothera biennis complex. Genetics, 79, 493–512.

    Google Scholar 

  • Levy, M., Steiner, E.E. & Levin, D.A. (1975). Allozyme genetics in permanent translocation heterozygotes in the Oenothera biennis complex. Biochem. Genet, 13, 487–500.

    Google Scholar 

  • Linhart, Y.B. (1974). Intrapopulation differentiation in annual plants, I. Veronica peregrina raised under non-competitive conditions. Evolution, 28, 232–243.

    Google Scholar 

  • Lloyd, D.G. (1979). Some reproductive factors affecting the selection of self-fertilization in plants. Amer. Nat, 113, 67–79.

    Google Scholar 

  • Lloyd, D.G. (1988). Benefits and costs with biparental and uniparental reproduction in plants. In The Evolution of Sex. An examination of Current Ideas, ed. R.E. Michod & B.R. Levin. Sinauer Associates, Sunderland, Massachusetts, pp. 233–252.

    Google Scholar 

  • Loveless, M.D. & Hamrick, J.L. (1984). Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst., 15, 65–95.

    Google Scholar 

  • Loveless, M.D. & Hamrick, J.L. (1988). Genetic organization and evolutionary history in two North American species of Cirsium. Evolution, 42, 254–265.

    Google Scholar 

  • MacArthur, R.H. & Wilson, E.O. (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Mashburn, S.J., Sharitz, R.R. & Smith, M.H. (1978). Genetic variation among Typha populations of the southeast United States. Evolution, 32, 681–685.

    Google Scholar 

  • Mayr, E. (1963). Animal Speciation and Evolution. Harvard Unversity Press, Cambridge, Massachusetts.

    Google Scholar 

  • McCauley, D.E. (1987). Population genetic consequences of local colonization: evidence from the milkweed beetle Tetraopes tetraopthalmus. Flor. Entomol., 70, 21–30.

    Google Scholar 

  • McClenaghan, L.R. Jr & Beauchamp, A.C. (1986). Low genetic differentiation among isolated populations of the California fan palm (Washingtonia filifera). Evolution, 40, 315–322.

    Google Scholar 

  • McLeod, M.J., Guttmanm Si., Eshbaugh, W.H. & Rayle, R.E. (1983). An electrophoretic study of evolution in Capsicum (Solanaceae). Evolution, 37, 562–574.

    Google Scholar 

  • McNeilly, T. (1968). Evolution in closely adjacent plant populations, III. Agrostis tenuis on a small copper mine. Heredity, 23, 99–118.

    Google Scholar 

  • Millar, C.I., Strauss, S.H., Conkle, M.T. & Westfall, R.D. (1988). Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus sect. Oocarpae). Syst. Bot., 13, 351–370.

    Google Scholar 

  • Mitton, J.B. & Grant, M.C. (1980). Observation on the ecology and evolution of quaking aspen, Populus tremuloides, in the Colorado front range. Amer. J. Bot., 67, 202–209.

    Google Scholar 

  • Mitton, J.B. & Grant, M.C. (1984). Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann. Rev. Ecol. Syst., 15, 479–499.

    Google Scholar 

  • Molau, U, Carlsson, M, Dahlgren, A. & Hill, Ö. (1989). Mating system and pollen-mediated gene flow in Bartsia alpina. Oikos, 55, 409–419.

    Google Scholar 

  • Moran, G.F. & Bell, J.C. (1983). Eucalyptus. In Isozymes in Plant Genetics and Breeding, ed. S.D. Tanksley & T.J. Orton. Elsevier, Amsterdam, pp. 423–441.

    Google Scholar 

  • Moran, G.F. & Hopper, S.D. (1983). Genetic diversity and the insular population structure of rare granite rock species, Eucalyptus caesia Benth. Aust. J. Bot., 31, 161–172.

    Google Scholar 

  • Moran, G.F. & Hopper, S.D. (1987). Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation. In Nature Conservation: The Role of Remnants of Native Vegetation, ed. D.A. Saunders, G.W. Arnold, A.A. Burbidge & J.M. Hopkins. Surrey Beatty and Sons, London, pp. 151–162.

    Google Scholar 

  • Motten, A.F. (1983). Reproduction of Erythronium umbilicatum (Liliaceae): pollination success and pollinator effectiveness. Oecologia (Berl.), 59, 351–359.

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Amer. Nat., 106, 283–292.

    Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA, 70, 3321–3323.

    Google Scholar 

  • Nei, M., Mauyama, T. & Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Nevo, E., Beiles, A., Kaplan, D., Goldenberg, E.M., Olsvig–Whittaker, L. & Naveh, Z. (1986). Natural selection of allozyme polymorphisms: a microsite test revealing ecological differentiation in wild barley. Evolution, 40, 13–20.

    Google Scholar 

  • Newport, M.E.A. (1989). A test for proximity–dependent outcrossing in the alpine skypilot, Polemonium viscosum. Evolution, 43, 1110–1103.

    Google Scholar 

  • Olesen, J.M. & Warncke, E. (1989). Temporal changes in pollen flow and neighbourhood structure in a population of Saxífraga hirculus L. Oecologia (Berl.), 79, 205–211.

    Google Scholar 

  • O’Malley, D.M., Allendorf, F.W. & Blake, G.M. (1979). Inheritance of isozyme variation and heterozygosity in Pinus ponderosa. Biochem. Genet., 17, 233–250.

    Google Scholar 

  • Palmer, M., Travis, J. & Antonovics, J. (1988). Seasonal pollen flow and progeny diversity in Amianthum muscaetoxicum: ecological potential for multiple mating in a self–compatible, hermaphroditic perennial. Oecologia (Berl.), 77, 19–24.

    Google Scholar 

  • Park, Y.S., Fowler D.P. & Coles, F.J. (1984). Population studies of white spruce, II, Natural inbreeding and relatedness among neighboring trees. Can J. For. Res., 14, 909–913.

    Google Scholar 

  • Pleasants, J.M. & Wendel, J.F. (1989). Genetic diversity in a clonal narrow endemic Erythronium propullans, and its widespread progenitor, Erythronium albidum. Amer. J. Bot., 76, 1136–1151.

    Google Scholar 

  • Powers, D.A. & Place, A.R. (1978). Biochemical genetics of Fundulus heteroclitus (L.), I. Temporal and spatial variation in gene frequencies of LDH–B, MDH–A, GPI–B and PGM–A. Biochem. Genet, 16, 593–607.

    Google Scholar 

  • Prentice, H.C. (1984). Enzyme polymorphism, morphometric variation and population structure in a restricted endemic, Silene diclinis (Caryophyllaceae). Biol. J. Linn. Soc., 22, 125–144.

    Google Scholar 

  • Price, M.V. & Waser, N.M. (1979). Pollen dispersal and optimal outcrossing in Delphinium nelsonii. Nature, Lond., 211, 294–296.

    Google Scholar 

  • Pyke, G.H. (1978). Optimal foraging: movements of bumblebees between inflorescences. Theoret. Popul. Biol, 13, 72–98.

    Google Scholar 

  • Rai, K.N. & Jain, S.K. (1982). Population biology of Avena, IX. Gene flow and neighbourhood size in relation to micrgeographic variation in Avena barbata. Oecologia (Berl.), 53, 399–405.

    Google Scholar 

  • Reinke, D.C. & Bloom, W.L. (1979). Pollen dispersal in natural populations: a method for tracking individual pollen grains. Syst. Bot., 4, 223–229.

    Google Scholar 

  • Richards, A.J. & Ibrahim, H. (1978). Estimation of neighbourhood size in two populations of Primula veris. In The Pollination of Flowers by Insects, ed. A.J. Richards. Academic Press, London, pp. 165–174.

    Google Scholar 

  • Ritland, K. (1989). Gene identity and the genetic demography of plant populations. In Plant Population Genetics, Breeding, and Genetic Resources, ed. A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir, Sinauer Associates. Sunderland, Massachusetts, pp. 181–199.

    Google Scholar 

  • Ritland, K. & Ganders, F.R. (1987). Crossability of Mimulus guttatus in relation to components of gene fixation. Evolution, 41, 772–786.

    Google Scholar 

  • Sage, R. & Wolff, J.O. (1986). Pleistocene glaciations, fluctuating ranges, and low genetic variability in a large mammal (Ovis dalli). Evolution, 40, 1092–1095.

    Google Scholar 

  • Schaal, B.A. (1974). Isolation by distance in Liatris cylindracea. Nature, Lond., 252, 703.

    Google Scholar 

  • Schaal, B.A. (1975). Population structure and local differentiation in Liatris cylindracea. Amer. Nat, 109, 511–528.

    Google Scholar 

  • Schaal, B.A. (1976). Genetic diversity in Liatris cylindracea. Syst. Bot., 1, 163–168.

    Google Scholar 

  • Schaal, B.A. (1980). Measurement of gene flow in Lupinus texensis Nature, Lond., 284, 450–451.

    Google Scholar 

  • Schaal, B.A. & Levin, D.A. (1977). The demographic genetics of Liatris cylindracea Michx. (Compositae). Amer. Nat., 110, 191–206.

    Google Scholar 

  • Schaal, B.A. & Levin, D.A. (1978). Morphological differentiation and neighborhood size in Liatris cylindracea. Amer. J. Bot., 65, 923–928.

    Google Scholar 

  • Schemske, D.W. & Lande, R. (1985). The evolution of self–fertilization and inbreeding depression, II. Emperical observations. Evolution, 39, 41–52.

    Google Scholar 

  • Schemske, D.W. & Pautler, L.P. (1984). The effect of pollen composition on fitness components in a neotropical herb. Oecologia (Berl.), 62, 31–36.

    Google Scholar 

  • Schmitt, J. (1980). Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution, 34, 934–943.

    Google Scholar 

  • Schmitt, J. (1983). Density–dependent pollinator foraging, flowering phenology, and temporal pollen dispersal patterns in Linanthus bicolor. Evolution, 37, 1247–1257.

    Google Scholar 

  • Schonewald–Cox, C.M., Chambers, S.M., MacBryde, B. & Thomas, L. (eds) (1983). Genetics and Conservation. A reference for Managing Wild Animal and Plant Populations. Benjamin Cummings, Menlo Park, California.

    Google Scholar 

  • Schwaegerle, K.E. & Schaal, B.A. (1979). Genetic variability and founder effect in the pitcher plant Sarracenia purpurea L. Evolution, 33, 1210–1218.

    Google Scholar 

  • Shaffer, M.L. (1981). Minimum population sizes for species conservation. BioScience, 31, 131–134.

    Google Scholar 

  • Shaffer, M.L. (1987). Minimum viable population: coping with uncertainty. In Viable Populations for Conservation, ed. M.E. Soulé. Cambridge University Press, Cambridge, pp. 69–86.

    Google Scholar 

  • Shields, W.M. (1982). Philopatry, Inbreeding, and the Evolution of Sex. State University of New York Press, Albany, New York.

    Google Scholar 

  • Silén, R.R. (1962). Pollen dispersal considerations for Douglas–fir. J. For., 60, 790–795.

    Google Scholar 

  • Simberloff, D. (1988). The contribution of population and community biology to conservation science. Ann. Rev. Ecol. Syst., 19, 473–511.

    Google Scholar 

  • Slatkin, M. (1977). Gene flow and genetic drift in a species subject to frequent

    Google Scholar 

  • local extinctions. Theoret. Popul. Biol, 12, 253–262.

    Google Scholar 

  • Slatkin, M. (1980). The distribution of mutant alleles in a subdivided population. Genetics, 95, 503–523.

    Google Scholar 

  • Slatkin, M. (1981). Estimating levels of gene flow in natural populations. Genetics, 99, 323–335.

    Google Scholar 

  • Slatkin, M. (1985a). Gene flow in natural populations. Ann. Rev. Ecol. Syst., 16, 393–430.

    Google Scholar 

  • Slatkin, M. (1985b). Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and geographic structure of natural populations. Science, NT, 236, 787–792.

    Google Scholar 

  • Snogerup, S. (1967). Studies in the Aegean flora, IX. Erysimum sect. Cheiranthus, B. Variation and evolution in the small–population system. Opera Bot., 14.

    Google Scholar 

  • Snogerup, S., Gustafsson, M. & von Bothmer, R. (1990). Brassica sect. Brassica (Brassicaceae), I. Taxonomy and variation. Willdenowia, 19, 271–365.

    Google Scholar 

  • Sokal, R.R. & Oden, N.C. (1978). Spatial autocorrelation in biology, 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc., 10, 229–249.

    Google Scholar 

  • Sokal, R.R. & Wartenberg, D.E. (1983). A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics, 105, 219–237.

    Google Scholar 

  • Soltis, D.E. (1982). Allozyme variability in Sullivantia (Saxifragaceae). Syst. Bot, 7, 26–34.

    Google Scholar 

  • Soulé, M.E. (1985). What is conservation biology? BioScience, 35, 727–734.

    Google Scholar 

  • Soulé, M.E. (ed.) (1987). Viable Populations for Conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Soulé, M.E. & Wilcox, B.A. (eds) (1980). Conservation Biology. An Evolutionary– Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Stebbins, G.L. (1957). Self–fertilization and population variability in the higher plants. Amer. Nat., 91, 337–354.

    Google Scholar 

  • Stratton, D.A., Cruzan, M.B. & Thomson, J.D. (1985). Pollen tube growth rate and outcrossing distance in Erythronium grandiflorum. Amer. J. Bot., 72, 866.

    Google Scholar 

  • Strauss, S.H. (1987). Heterozygosity and developmental stability under inbreeding and crossbreeding in Pinus attenuata. Evolution, 41, 331–339.

    Google Scholar 

  • Sultan, S.E. (1987). Evolutionary implications of phenotypic plasticity in plants. Evol. Biol, 21, 127–178.

    Google Scholar 

  • Svensson, L. (1985). An estimate of pollen carryover by ants in a natural population of Scleranthus perennis L. (Caryophyllaceae). Oecologia (Berl.), 66, 373–377.

    Google Scholar 

  • Svensson, L. (1988). Inbreeding crossing and variation in stamen number in Scleranthus annuus (Caryophyllaceae), a selfing annual. Evolutionary Trends in Plants, 2, 31–37.

    Google Scholar 

  • Svensson, L. (1990). Distance–dependent regulation of stamen number in crosses of Scleranthus annuus from a discontinuous population. Amer. J. Bot, 77, 889–896.

    Google Scholar 

  • Sytsma, K.J. & Schaal, B.A. (1985). Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. Evolution, 39, 582–593.

    Google Scholar 

  • Templeton, A.R. (1986). Coadaptation and outbreeding depression. In Conservation Biology, The Science of Scarcity and Diversity, ed. M.E. Soulé. Sinauer Associates, Sunderland, Massachusetts, pp. 105–116.

    Google Scholar 

  • Thomson, J.D. & Plowright, R.C. (1980). Pollen carryover, nectar rewards and pollinator behavior with special reference to Diervilla lonicera. Oecologia (Berl.), 46, 68–74.

    Google Scholar 

  • Turner, M.E., Stephens, J.C. & Anderson, W.W. (1982). Homozygosity and patch structure in plant populations as a result of nearest–neighbor pollination. Proc. Natl Acad. Sci. USA, 79, 203–207.

    Google Scholar 

  • Wade, M.J. & McCauley, D.E. (1988). Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995–1005.

    Google Scholar 

  • Waller, D.M., O’Malley, D.M. & Gawler, S.C. (1987). Genetic variation in the extreme endemic Pedicularis furbishiae (Scrophulariaceae). Conserv. Biol., 1, 335–340.

    Google Scholar 

  • Warwick, S.I. & Gottlieb, L.D. (1985). Genetic divergence and geographic speciation in Layia (Compositae). Evolution, 39, 1236–1241.

    Google Scholar 

  • Waser, N.M. (1987). Spatial genetic heterogeneity in a population of the montane perennial plant Delphinium nelsonii. Heredity, 58, 249–256.

    Google Scholar 

  • Waser, N.M. (1987). Spatial genetic heterogeneity in a population of the montane perennial plant Delphinium nelsonii. Heredity, 58, 249–256.

    Google Scholar 

  • Waser, N.M. & Price, M.V. (1982). A comparison of pollen and fluorescent dye carry–over by natural pollinators of Ipomopsis aggregata (Polemoniaceae). Ecology, 63, 1168–1172.

    Google Scholar 

  • Waser, N.M. & Price, M.V. (1983). Optimal and actual outcrossing in plants, and the nature of plant pollinator interaction. In Handbook of Experimental Pollination Biology, ed. C.E. Jones & R.J. Little. Scientific and Academic Editions, Van Nostrand, New York, pp. 341–359.

    Google Scholar 

  • Waser, N.M. & Price, M.V. (1989). Optimal outcrossing in Ipomopsis aggregata: seed set and offspring fitness. Evolution, 43, 1097–1109.

    Google Scholar 

  • Waser, N.M., Price, M.V., Montalvo, A.M. & Gray, R.N. (1987). Female mate choice in a perennial herbaceous wildflower, Delphinium nelsonii. Evolutionary Trends in Plants, 1, 29–33.

    Google Scholar 

  • Watt, W.B. (1985). Bioenergetics and evolutionary genetics: opportunities for new synthesis. Amer. Nat., 125, 118–143.

    Google Scholar 

  • Widén, B. (1987). Population biology of Senecio integrifolius (Compositae), a rare plant in Sweden. Nord. J. Bot., 7, 687–704.

    Google Scholar 

  • Widen, B. & Widén, M. (1990). Pollen limitation and distance–dependent fecundity in females of the clonal gynodioeeious herb Glechoma hederacea (Lamiaceae). Oecologia (Berl.), 83, 191–196.

    Google Scholar 

  • Wright, J.W. (1953). Pollen–dispersion studies: some practical applications. J. For., 51, 114–118.

    Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    Google Scholar 

  • Wright, S. (1943a). Isolation by distance. Genetics, 28, 114–138.

    Google Scholar 

  • Wright, S. (1946). Isolation by distance under diverse systems of mating. Genetics, 31, 39–59.

    Google Scholar 

  • Wright, S. (1951). The genetical structure of populations. Ann. Eugenics, 15, 323–354.

    Google Scholar 

  • Wright, S. (1965). The interpretation of population structure by F–statistics with special regard to systems of mating. Evolution, 10, 395–420.

    Google Scholar 

  • Wright, S. (1969). Evolution and the Genetics of Populations, Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Wright, S. (1977). Evolution and the Genetics of Natural Populations, Vol 3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S. (1978). Evolution and the Genetics of Populations, Vol 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Wyatt, R. (1988). Phylogenetic aspects of the evolution of self–pollination. In Plant Evolutionary Biology, ed. L.D. Gottlieb & S.K. Jain. Chapman & Hall, London, pp. 109–131.

    Google Scholar 

  • Yeh, F.C. & Layton, C. (1979). The organisation of genetic variability in central and marginal populations of lodgepole pine Pinus contorta ssp. latifolia. Can. J. Genet. Cytol., 21, 487–503.

    Google Scholar 

  • Zimmerman, M. (1982). The effect of nectar production on neighborhood size. Oecologia (Berl.), 52, 104–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Widen, B., Svensson, L. (1992). Conservation of Genetic Variation in Plants—The Importance of Population Size and Gene Flow. In: Hansson, L. (eds) Ecological Principles of Nature Conservation. Conservation Ecology Series: Principles, Practices and Management. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3524-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3524-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-718-5

  • Online ISBN: 978-1-4615-3524-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics