Skip to main content

Inversion Polymorphism in Island Species of Drosophila

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 26))

Abstract

Chromosomal mutations, such as inversions, are major, observable changes in the Drosophila genome, and therefore have been extensively and intensively studied for many years (Bush et al.,1977; Carson and Yoon, 1982; Dobzhansky, 1970; Sperlich and Pfriem, 1986; Wasserman, 1982a,b). The factors involved in their origin, survival in the heterozygous condition, and fixation must be almost as diverse as the species in which they occur. Moreover, those elements that tend to promote polymorphism are almost certainly antagonistic to those that lead to the fixation of these mutations. It should not be surprising, then, to find that there is no single evolutionary mechanism that can fully explain the chromosomal variability found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, J. S. F., and Mulley, J. C., 1976, Isozyme variation in natural populations of Drosophila buzzatii, Evolution 30:213–233.

    Article  CAS  Google Scholar 

  • Berg, R. L., Engels, W. R., and Kreber, R. A., 1980, Site-specific X-chromosome rearrange-ments from hybrid dysgenesis in Drosophila melanogaster, Science 210:427–429.

    Article  PubMed  CAS  Google Scholar 

  • Blair, W. F., 1950, Ecological factors in speciation of Peromyscus, Evolution 4:253–275.

    Article  Google Scholar 

  • Brncic, D., 1957a, A comparitive study of chromosomal variation in species of the mesophragmatica group of Drosophila, Genetics 42:798–805.

    CAS  Google Scholar 

  • Brncic, D., 1957b, Chromosomal polymorphism in natural populations of Drosophila pavani, Chromosoma 8:699–708.

    Article  CAS  Google Scholar 

  • Brussard, P. F., 1984, Geographical patterns and environmental gradients: The central—marginal model of Drosophila revisited, Annu. Rev. Ecol. Syst. 15:25–64.

    Article  Google Scholar 

  • Bush, G. L., 1975, Modes of animal speciation, Annu. Rev. Ecol. Syst. 6:339–364.

    Article  Google Scholar 

  • Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L., 1977, Rapid speciation and chromosomal evolution in mammals, Proc. Natl. Acad. Sci. USA 74:3942–3946.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H. L., 1959, Genetic conditions which promote or retard the formation of species, Cold Spring Harbor Symp. Quant. Biol. 24:87–105.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H. L., 1967, Permanent heterozygosity, in: Evolutionary Biology, Vol. I (Th. Dobzhansky, M. K. Hecht, and W. C. Steere, eds.), pp. 143–168, Appleton-Centrury-Crofts, New York.

    Google Scholar 

  • Carson, H. L., 1987, High fitness of heterokaryotypic individuals segregating naturally within a long-standing laboratory population of Drosophila sylvestris, Genetics 116:415–422.

    PubMed  CAS  Google Scholar 

  • Carson, H. L., and Templeton, A. R., 1984, Genetic revolution in relation to speciation phenomena: The founding of new populations, Annu. Rev. Ecol. Syst. 15:97–131.

    Article  Google Scholar 

  • Carson, H. L., and Yoon, J. S., 1982, Genetics and evolution of Hawaiian Drosophila,in: Genetics and Biology of Drosophila, Vol. 3b( M. Ashburner, H. L. Carson, and J. N. Thompson, Jr., eds.), pp. 298–344, Academic Press, London.

    Google Scholar 

  • Coyne, J. A., 1984, Genetic basis of male sterility in hybrids between two closely related species of Drosophila,Proc. Natl. Acad. Sci. USA 84:4444–4447.

    Article  Google Scholar 

  • Coyne, J. A., 1985, The genetic basis of Haldane’s rule, Nature 314:736–738.

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky, Th., 1970, Genetics of the Evolutionary Process,Columbia University Press, New York.

    Google Scholar 

  • Dodd, D. M. B., and Powell, J. R., 1985, Founder-flush speciation: An update of experimental results with Drosophila, Evolution 39:1388–1392.

    Article  Google Scholar 

  • Ehrman, L., and Wasserman, M., 1987, The significance of asymmetrical sexual isolation, in: Evolutionary Biology, Vol. 21 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 1–20, Plenum Press, New York.

    Chapter  Google Scholar 

  • Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. M. Schopf, ed.), pp. 82–115, Freeman, Cooper and Co., San Francisco.

    Google Scholar 

  • Engels, W. R., and Preston, C. R., 1984, Formation of chromosome rearrangements by P factors in Drosophila, Genetics 107:657–678.

    PubMed  CAS  Google Scholar 

  • Fontdevila, A., Wasserman, M., Pla, C., Pilares, L., de Armengol, R., Suyo, M. P., Sanchez, A., Vasquez, J., Ruiz, A., and Garcia, J. L., 1990, Description and evolutionary relationships of two species of the Drosophila mulleri cluster (Diptera: Drosophilidae), Ann. Entomol. Soc. Am. 83:444–452.

    Google Scholar 

  • Heed, W. B., 1957, An attempt to detect hybrid mating between D. mulleri and D. aldrichi under natural conditions, Univ. Tex. Pub. 5721:182–185.

    Google Scholar 

  • Heed, W. B., 1981, Central and marginal populations revisited, Drosophila Information Service 56:60–61.

    Google Scholar 

  • Heed, W. B., and Grimaldi, D., 1991, Revision of the morphocryptic, Caribbean mayaguana species subcluster, in the Drosophila repleta group (Diptera: Drosophilidae), Am. Mus. Novit. 2999:1–15.

    Google Scholar 

  • Heed, W. B., and Russell, J. S., 1971, Phylogeny and population structure in island and continental species of the cardini group of Drosophila studied by inversion analysis, Univ. Tex. Pub. 7103:91–130.

    Google Scholar 

  • Heed, W. B., Sanchez, A., Armengol, R., and Fontdevila, A., 1990, Genetic differentiation among island populations and species of cactophilic Drosophila in the West Indies, in: Ecology and Evolutionary Genetics of Drosophila (J. S. F. Barker, R. Maclntyre, and W. T. Starmer, eds.), pp. 447–489, Plenum Press, New York.

    Google Scholar 

  • Imai, H. T., Maruyama, T., Gojobori, T., Inoue, Y., and Crozier, R., 1986, Theoretical bases for karyotype evolution. I. The minimum-interaction hypothesis, Am. Nat. 128:900–920.

    Article  Google Scholar 

  • Lande, R., 1979, Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement, Evolution 33:234–251.

    Article  Google Scholar 

  • Lande, R., 1984, The expected fixation rate of chromosomal inversions, Evolution 38:743–752.

    Article  Google Scholar 

  • Levene, H., and Dobzhansky, Th., 1958, New evidence of heterosis in naturally occurring inversion heterozygotes in Drosophila pseudoobscura,Heredity 12:37–49.

    Article  Google Scholar 

  • Naveira, H., and Fontdevila, A., 1985, The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosomal rearrangements induced by introgressive hybridization, Chromosoma 91:87–94.

    Article  PubMed  CAS  Google Scholar 

  • Naveira, H., and Fontdevila, A., 1986, The evolutionary history of Drosophila buzzatii. XII. The genetic basis of sterility in hybrids between D. buzzatii and its sibling D. serido from Argentina, Genetics 114:841–857.

    PubMed  CAS  Google Scholar 

  • Naveira, H., Hauschteck-Jungen, E., and Fontdevila, A., 1984, Spermiogenesis of inversion heterozygotes in backcross hybrids between Drosophila buzzatii and D. serido,Genetica 65:205–214.

    Article  Google Scholar 

  • Patterson, J. T., 1943, The Drosophilidae of the southwest, Univ. Tex. Pub. 4313:7–216.

    Google Scholar 

  • Patterson, J. T., 1947, Sexual isolation in the mulleri subgroup, Univ. Tex. Pub. 4720:32–40.

    Google Scholar 

  • Ruiz, A., and Fontdevila, A., 1981, Ecologia y evolucion del subgroup mulleri de Drosophila en Venezuela y Colombia, Acta Cient. Venez. 32:338–345.

    Google Scholar 

  • Ruiz, A., Heed, W. B., and Wasserman, M., 1990, Evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species, J. Hered. 81:30–42.

    PubMed  CAS  Google Scholar 

  • Sperlich, D., and Pfriem, P., 1986, Chromosomal polymorphism in natural and experimental populations, in: The Genetics and Biology of Drosophila, Vol. 3e (M. Ashburner, H. L. Carson, and J. N. Thompson, Jr., eds.), pp. 257–309, Academic Press, London.

    Google Scholar 

  • Vigneault, G., and Zouros, E., 1986, The genetics of asymmetrical male sterility in Drosophila mojavensis and Drosophila arizonensis hybrids: Interactions between the Y-chromosome and autosomes, Evolution 40:1160–1170.

    Article  Google Scholar 

  • Vilela, C. R., 1983, A revision of the Drosophila repleta species group (Diptera, Drosophilidae), Rev. Brasil. Entomol. 24:1–114.

    Google Scholar 

  • Vilela, C. R., Pereira, M. A. Q. R., and Sene, F. M., 1983, Preliminary data on the geographical distribution of Drosophila species within morphoclimatic domains of Brazil. II. The repleta group, Cienc. Cult. 35:66–70.

    Google Scholar 

  • Wasserman, M., 1954, Cytological studies on the repleta group, Univ. Tex. Pub. 5422:130–152.

    Google Scholar 

  • Wasserman, M., 1968, Recombination-induced chromosomal heterosis, Genetics 58:125–139.

    PubMed  CAS  Google Scholar 

  • Wasserman, M., 1982a, Evolution and speciation in selected species groups. Evolution of the repleta group, in: The Genetics and Biology of Drosophila, Vol. 3b (M. Ashburner, H. L. Carson, and J. N. Thompson, Jr.), pp. 61–139, Academic Press, London.

    Google Scholar 

  • Wasserman, M., 1982b, Cytological evolution of the Drosophila repleta group, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila model (J. S. F. Barker and W. T. Starmer, eds.), pp. 49–64, Academic Press, New York.

    Google Scholar 

  • Wasserman, M., 1992, Cytological evolution of the Drosophila repleta species group, in: Inversion Polymorphism in Drosophila (C. Krimbas and J. Powell, eds.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wasserman, M., and Koepfer, H. R., 1975, Fitness of karyotypes in Drosophila pseudoobscura, Genetics 79:113–126.

    PubMed  CAS  Google Scholar 

  • Wasserman, M., and Wilson, F. D., 1957, Further studies on the repleta group, Univ. Tex. Pub. 5721:132–156.

    Google Scholar 

  • Wharton, L. T., 1942, Analysis of the repleta group of Drosophila, Univ. Tex. Pub. 4228:23–52.

    Google Scholar 

  • White, M. J. D., 1968, Models of speciation, Science 159:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, O., and Mukai, T., 1974, Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster, Genetics 78:1209–1221.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, O., Cardellino, R. A., and Mukai, T., 1976, High rates of occurrence of spontaneous chromosome aberrations in Drosophila melanogaster, Genetics 83:409–422.

    PubMed  CAS  Google Scholar 

  • Yoon, J. S., 1989, Chromosomal evolution and speciation in Hawaiian Drosophila,in: Genetics, Speciation and the Founder Principle (L. V. Giddings, K. Y. Kaneshiro, and W. W. Anderson, eds.), pp. 129–147, Oxford University Press, Oxford.

    Google Scholar 

  • Zouros, E., 1981a, The chromosomal basis of sexual isolation in two sibling species of Drosophila: Drosophila arizonensis and Drosophila mojavensis, Genetics 97:703–718.

    CAS  Google Scholar 

  • Zouros, E., 1981b, The chromosomal basis of viability in interspecific hybrids between Drosophila arizonensis and Drosophila mojavensis, Can. J. Genet. Cytol. 23:65–72.

    Google Scholar 

  • Zouros, E., Lofdahl, K., and Martin, P. A., 1988, Male hybrid sterility in Drosophila: Interactions between autosomes and sex chromosomes in crosses of D. mojavensis and D. arizonensis,Evolution 42:1321–1331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wasserman, M., Wasserman, F. (1992). Inversion Polymorphism in Island Species of Drosophila . In: Hecht, M.K., Wallace, B., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3336-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3336-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6470-2

  • Online ISBN: 978-1-4615-3336-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics