Skip to main content

Abstract

Modulation calorimetry consists in creating periodical oscillations of the power which heats the sample and in recording the oscillations of the sample temperature about its mean value. The mean temperature, and the amplitude and phase of the temperature oscillations are assumed to be the same throughout the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya.A. Kraftmakher, in: Compendium of Thermophysical Property Measurement Methods, Vol. 1 (K.D. Maglić, A. Cezairliyan, and V.E. Peletsky, eds.), pp. 591–641, Plenum Press, New York (1984).

    Chapter  Google Scholar 

  2. S.V. Boyarskii and I.I. Novikov, “Specific Heat and Some Acoustic Properties of Co and Zr at the Phase Transitions” (in Russian), Teplofiz. Vys. Temp. 19, 201–203 (1981).

    Google Scholar 

  3. D.S. Robinson and M.B. Salamon, “Universality, Tricriticality, and the Potts Transition in First-Stage Lithium-Intercalated Graphite,” Phys. Rev. Lett. 48, 156–159 (1982).

    Article  ADS  Google Scholar 

  4. D.N. Bittner and M. Bretz, “Heat Capacity of Antimony Pentachloride-Intercalated Graphite,” Phys. Rev. B 31, 1060–1068 (1985).

    Article  ADS  Google Scholar 

  5. E. Kanda, M. Yoshizawa, T. Yamakami, and T. Fujimura, “Specific Heat Study of Ferroelectric CsH2PO4and CsD2PO4,” J. Phys. C 15, 6823–6831 (1982).

    Article  ADS  Google Scholar 

  6. K. Ema, “Critical Behavior in the Heat Capacity of Ferroelectric TGS, TGSe, and TGFB,” J. Phys. Soc. Jpn. 52, 2798–2809 (1983).

    Article  ADS  Google Scholar 

  7. M. Matsuura, H. Yao, K. Gouhara, I. Hatta, and N. Kato, “Heat Capacity in a-ß Phase Transition of Quartz,” J. Phys. Soc. Jpn. 54, 625–629 (1985).

    Article  ADS  Google Scholar 

  8. I. Hatta, M. Matsuura, H. Yao, K. Gouhara, and N. Kato, “True Behavior of Heat Capacity in a, Incommensurate and ß Phases of Quartz,” Thermochim. Acta 88, 143–148 (1985).

    Article  Google Scholar 

  9. N. Sugimoto, T. Matsuda, and I. Hatta, “Specific Heat Capacity of Pb1-xGexTe at Their Structural Phase Transitions,” J. Phys. Soc. Jpn. 50, 1555–1559 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Stokka and V. Samulionis, “Specific Heat near Two Phase Transitions in CsBi(MoO4)2 Crystals,” Phys. Status Solidi A 67, K89–K92 (1981).

    Article  ADS  Google Scholar 

  11. S. Stokka and K. Fossheim, “Specific Heat and Phase Diagrams for Uniaxially Stressed KMnF3,” J. Phys. C 15, 1161–1176 (1982).

    Article  ADS  Google Scholar 

  12. S. Stokka, K. Fossheim, T. Johansen, and J. Feder, “Specific Heat of CsPbC13 near Three Phase Transitions,” J. Phys. C 15, 3053–3058 (1982).

    Article  ADS  Google Scholar 

  13. T. Goto, M. Yoshizawa, A. Tamaki, and T. Fujimura, “Elastic and Thermal Properties of the Layered Compound (CH3NH3)2FeC14,” J. Phys. C 15, 3041–3051 (1982).

    Article  ADS  Google Scholar 

  14. M. Yoshizawa, T. Fujimura, T. Goto, and K. Kamiyoshi, “Specific Heat of the NH4C11-xBrx System,” J. Phys. C 16, 131–142 (1983).

    Article  ADS  Google Scholar 

  15. S. Hirotsu, M. Miyamota, and K. Ema, “Three-State Potts Transition in Sodium Azide: Experimental Study of an Order of the Transition by Means of a Heat Capacity Measurement,” J. Phys. C 16, L661–L666 (1983).

    Article  ADS  Google Scholar 

  16. T. Brgczewski, P. Piskunowicz, and G. Jaroma-Weiland, “Thermal Properties of LiKSO4 Crystals in the Temperature Region from 400 K to 950 K,” Acta Phys. Pol. A 66, 555–560 (1984).

    Google Scholar 

  17. S. Imaizumi, I. Hatta, and T. Matsuda, “Experimental Study of Dynamic Specific Heat Capacity of Protein Aqueous Solutions,” J. Phys. Soc. Jpn. 50, 276–280 (1981).

    Article  ADS  Google Scholar 

  18. J.M. Viner, D. Lamey, C.C. Huang, R. Pindak, and J.W. Goodby, “Heat Capacity near the Smectic-A-Hexatic-B and Hexatic-B-E Transitions of n-Hexyl-4’-n-pentyloxibiphenil-4carboxylate (650BC),” Phys. Rev. A 28, 2433–2441 (1983).

    Article  ADS  Google Scholar 

  19. S.C. Lien, C.C. Huang, and J.W. Goodby, “Heat-Capacity Studies near the Smectic-A-SmecticC (-Smectic-C*) Transition in a Racemic (Chiral) Smectic Liquid Crystal,” Phys. Rev. A 29, 1371–1374 (1984).

    Article  ADS  Google Scholar 

  20. I. Hatta, K. Suzuki, and S. Imaizumi, “Pseudo-Critical Heat Capacity of Single Lipid Bilayers,” J. Phys. Soc. Jpn. 52, 2790–2797 (1983).

    Article  ADS  Google Scholar 

  21. I. Hatta and A.J. Ikushima, “Studies of Phase Transitions by AC Calorimetry,” Jpn. J. Appl. Phys. 20, 1995–2011 (1981).

    Article  ADS  Google Scholar 

  22. C.W. Garland, “High-Resolution AC Calorimetry and Critical Behavior at Phase Transitions,” Thermochim. Acta 88, 127–142 (1985).

    Article  Google Scholar 

  23. G. Fritsch, R. Lachner, H. Diletti, and E. Lüscher, “Specific Heat of High-Purity Solid Gallium Close to the Melting Point,” Phil. Mag. A 46, 829–839 (1982).

    Article  ADS  Google Scholar 

  24. G. Fritsch, H. Diletti, and E. Lüscher, “Specific Heat and Surface Melting of Sodium,” Phil. Mag. A 50, 545–558 (1984).

    Article  ADS  Google Scholar 

  25. V.Ya. Fridman, “On a Brightness Anomaly Near the Melting Point of Platinum” (in Russian), Inzh.-Fiz. Zh. 44, 986–988 (1983).

    Google Scholar 

  26. Ya.A. Kraftmakher, “Premelting Anomaly in Specific Heat of Platinum,” Paper 101, 6th European Conference “Thermophysical Properties—Research and Application,” Dubrovnik (1978).

    Google Scholar 

  27. L.A. Blagonravov, L.P. Filippov, V.A. Alekseev, and V.N. Shnerko, “Specific Heat of Liquid Cesium at Temperatures up to 2000 K and Pressures up to 12 MPa”Inzh.-Fiz. Zh. 44, 438–444 (1983).

    Google Scholar 

  28. L.A. Blagonravov, V.N. Shnerko, L.P. Filippov, and V.A. Alekseev, “Specific Heat of Liquid Rubidium in the Range 1300 to 1900 K and at Pressures up to 16 MPa” (in Russian), Teplofiz. Vys. Temp. 22, 177–179 (1984).

    Google Scholar 

  29. O.K. Gulish, I.N. Polandov, and A.A. Kuyumchev, “Pressure Effect on the Thermodynamic State of Solid Solution of TGS-TGSe” (in Russian), Fiz. Tverd. Tela 25, 2115–2119 (1983).

    Google Scholar 

  30. S.Yu. Glazkov and Ya.A. Kraftmakher, “High-Temperature Modulation Dilatometer with Interferometric Registration” (in Russian), Teplofiz. Vys. Temp. 21, 769–772 (1983).

    Google Scholar 

  31. S.Yu. Glazkov, “Point-Defect Formation and Temperature Coefficient of Electrical Resisitivity of Platinum and Platinum-(10 wt%) Rhodium Alloy in the Range 1100–1900 K”, Int. J. Thermophys. 6, 421–426 (1985).

    Article  ADS  Google Scholar 

  32. Ya.A. Kraftmakher, “Relaxation Effect in the High-Temperature Specific Heat of Tungsten” (in Russian), Fiz. Tverd. Tela 27, 235–237 (1985).

    Google Scholar 

  33. A.A. Kurichenko, A.D. Ivliev, and V.E. Zinov’ev, “Investigation of Thermophysical Properties of Rare-Earth Metals Using Modulated Laser Radiation” (in Russian), Teplofiz. Vys. Temp. 24, 493–499 (1986).

    Google Scholar 

  34. I.N. Polandov, V.A. Chernenko, and V.K. Novik, “AC Calorimetry of Solids at High Hydrostatic Pressures,” High Temp. High Pressures 13, 399–406 (1981).

    Google Scholar 

  35. S. Stokka and K. Fossheim, “A Simple System for Automatic Specific Heat Measurements,” J. Phys. E 15, 123–127 (1982).

    Article  ADS  Google Scholar 

  36. S. Imaizumi, K. Suzuki, and I. Hatta, “AC Calorimeter for Liquid Including Suspension of Biological Materials,” Rev. Sci. Instrum. 54, 1180–1185 (1983).

    Article  ADS  Google Scholar 

  37. C.C. Huang, J.M. Viner, and J.C. Novack, “New Experimental Technique for Simultaneously Measuring Thermal Conductivity and Heat Capacity,” Rev. Sci. Instrum. 56,1390–1393 (1985).

    Article  ADS  Google Scholar 

  38. M. Kawai, T. Miyakawa, and T. Tako, “AC Measurement of Seebeck Coefficient in Disk-Shaped Semiconductors Using cw-Lasers,” Jpn. J. Appl. Phys. 23, 1202–1208 (1984).

    Article  ADS  Google Scholar 

  39. W. Kettler, S.N. Kaul, and M. Rosenberg, “Absolute Thermoelectric Power in Amorphous FexNi80-xB19Si1 Alloys,” Phys. Rev. B 29, 6950–6956 (1984).

    Article  ADS  Google Scholar 

  40. E. Papp, “The Thermoelectric Power of Ni and Ni-Cu Alloy near the Curie Temperature Measured by an AC Method,”Z. Phys. B 55, 17–22 (1984).

    Article  ADS  Google Scholar 

  41. Ya.A. Kraftmakher, “Modulation Method for Measuring Specific Heat” (in Russian), Zh. Prikl. Mekh. Tekhn. Fiz. (5), 176–180 (1962).

    Google Scholar 

  42. Ya.A. Kraftmakher, “Potentiometer Circuit for Measuring Specific Heat by Modulation Method” (in Russian), Zh. Prikl. Mekh. Tekhn. Fiz. (2), 144 (1966).

    Google Scholar 

  43. R.A. Haefer, “Cryogenic Vacuum Techniques,” J. Phys. E. 14, 273–288 (1981).

    Article  ADS  Google Scholar 

  44. A.A. Varchenko and Ya.A. Kraftmakher, “Non-adiabatic Regime in Modulation Calorimetry,” Phys. Status Solidi A 20, 387–393 (1973).

    Article  ADS  Google Scholar 

  45. Ya.A. Kraftmakher, “Electric Conductivity of Nickel near the Curie Point” (in Russian), Fiz. Tverd. Tela 9, 1529–1530 (1967).

    Google Scholar 

  46. Ya.A. Kraftmakher and G.G. Sushakova, “Equilibrium Vacancies and Electric Conductivity of Platinum” (in Russian), Fiz. Tverd. Tela 16, 138–142 (1974).

    Google Scholar 

  47. G.C. Lowenthal, “The Specific Heat of Metals between 1200 K and 2400 K,” Austral. J. Phys. 16, 47–67 (1963).

    Article  ADS  Google Scholar 

  48. L.P. Filippov and R.P. Yurchak, “Measurement of Specific Heat of Solid and Liquid Metals” (in Russian), Teplofiz. Vys. Temp. 3, 901–909 (1965).

    Google Scholar 

  49. I.A. Akhmatova, “Measurement of Specific Heat of Liquid Tin at High Temperatures” (in Russian), Dokl. Akad. Nauk SSSR 162, 127–129 (1965).

    Google Scholar 

  50. I.A. Akhmatova, “Specific Heat of Molten Gallium and Copper at High Temperatures” (in Russian), Izmer. Tekh. (8), 14–17 (1967).

    Google Scholar 

  51. Ya.A. Kraftmakher, in: Investigations at High Temperatures (in Russian) (I.I. Novikov and P.G. Strelkov, eds.), pp. 5–54, Nauka, Novosibirsk (1966).

    Google Scholar 

  52. A.M. Glass, “Dielectric, Thermal, and Pyroelectric Properties of Ferroelectric LiTaO3,” Phys. Rev. 172, 564–571 (1968).

    Article  ADS  Google Scholar 

  53. P. Handler, D.E. Mapother, and M. Rayl, “AC Measurement of the Heat Capacity of Nickel near Its Critical Point,” Phys. Rev. Lett. 19, 356–358 (1967).

    Article  ADS  Google Scholar 

  54. A.S. Derman and O.V. Bogorodskii, “Complex Measurement of Thermophysical Properties of Melts” (in Russian), Izv. AN SSSR, Ser. Fiz. 34, 1215–1216 (1970).

    Google Scholar 

  55. R.P. Yurchak, “An Arrangement for Complex Measurements of Thermophysical Properties of Insulators” (in Russian), Zavod. Labor. 37, 1514–1516 (1971).

    Google Scholar 

  56. V.A. Chernenko, I.N. Polandov, and V.K. Novik, “An Arrangement for Investigation of Specific Heat of Ferroelectrics Under High Pressures Using a Dynamical Method” (in Russian), Prib. Tekhn. Eksper. (1), 222–225 (1979).

    Google Scholar 

  57. Ya.A. Kraftmakher and V.Ya. Cherepanov, “Compensation of Heat Losses in Modulation Measurements of Specific Heat” (in Russian), Teplofiz. Vys. Temp. 16, 647–649 (1978).

    Google Scholar 

  58. T.E. Pochapsky, “Heat Capacity and Thermal Diffusivity of Silver Bromide,” J. Chem. Phys. 21,1539–1540 (1953).

    Article  ADS  Google Scholar 

  59. Ya.A. Kraftmakher and I.M. Cheremisina, “Modulation Method for Measuring Thermal Expansion” (in Russian), Zh. Prikl. Mekh. Tekhn. Fiz. (2), 114–115 (1965).

    Google Scholar 

  60. L.P. Filippov, Measurement of Thermal Properties of Solid and Liquid Metals at High Temperatures (in Russian), Moscow State University, Moscow (1967).

    Google Scholar 

  61. L.R. Holland and R.C. Smith, “Analysis of Temperature Fluctuations in AC Heated Filaments,” J. Appl. Phys. 37, 4528–4536 (1966).

    Article  ADS  Google Scholar 

  62. Ya.A. Kraftmakher and T.Yu. Pinegina, “Thermoelectric Power of Iron near the Curie Point,” Phys. Status Solidi 42, K151–K152 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kraftmakher, Y.A. (1992). Practical Modulation Calorimetry. In: Maglić, K.D., Cezairliyan, A., Peletsky, V.E. (eds) Compendium of Thermophysical Property Measurement Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3286-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3286-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6445-0

  • Online ISBN: 978-1-4615-3286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics