Skip to main content

Character-State Weighting for Restriction Site Data in Phylogenetic Reconstruction, with an Example from Chloroplast DNA

  • Chapter
Molecular Systematics of Plants

Abstract

Data derived from cleavage points of various restriction endonucleases in all three genomes present in eukaryotes—nuclear, mitochondrial, and chloroplast— have been used for phylogenetic reconstruction in diverse groups of organisms. Mapped restriction sites, which represent a sampling of a whole genome or of any specific sequence, can be considered estimates of homologous characters and their transformations. In this sense, restriction site data are like any other robustly derived systematic data (e.g., morphological). An important difference is that probabilities for character-state transformations within restriction site characters can now be formulated using hypothetical or empirical estimates of sequence evolution (DeBry and Slade, 1985). Such transformational probabilities can be incorporated into phylogenetic reconstruction using parsimony with the application of maximum likelihood character-state weights (Felsenstein, 1981a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, J., Cherney, B., Merlin, E., and Palmer, J.D. (1986) Sequence of the rbcL gene for the large subunit of ribulose bisphosphate carboxylase-oxygenase from petunia. Nucleic Acids Res. 14, 9534.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J. C., Lansman, R. A., and Shade, R. O. (1979) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics 92, 279–295.

    PubMed  CAS  Google Scholar 

  • Baldwin, B.G., Kyhos, D.W., and Dvořák, J. (1990) Chloroplast DNA evolution and adaptive radiation in the Hawaiian silvers word alliance (Asteraceae-Madiinae). Ann. Missouri Bot. Gard. 77, 96–109.

    Article  Google Scholar 

  • Bremer, K., Humphries, C.J., Mishler, B.D., and Churchill, S.P. (1987) On cladistic relationships in green plants. Taxon 36, 339–349.

    Article  Google Scholar 

  • Brown, W.M. (1983) Evolution of animal mitochondrial DNA. In: Evolution of Genes and Proteins (eds. M. Nei and R.K. Koehn), Sinauer Associates, Sunderland, MA., pp. 62–88.

    Google Scholar 

  • Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C. (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18, 225–239.

    Article  PubMed  CAS  Google Scholar 

  • Chase, M.W., and Palmer, J.D. (1989) Chloroplast DNA systematics of lilioid monocots: resources, feasibility, and an example from the Orchidaceae. Amer. J. Bot. 76, 1720–1730.

    Article  Google Scholar 

  • Clegg, M.T., Ritland, K., and Zurawski, G. (1986) Processes of chloroplast DNA evolution. In Evolutionary Processes and Theory (eds. S. Karlin and E. Nevo), Academic Press, New York, pp. 275–294.

    Google Scholar 

  • Colless, D.H. (1970) The phenogram as an estimate of phylogeny. Syst. Zool. 19, 352–362.

    Article  Google Scholar 

  • Cornet, B. (1986) The leaf venation and reproductive structures of a late Triassic angio-sperm, Sanmiguelia lewisii. Evol. Theory 7, 231–309.

    Google Scholar 

  • Cracraft, J. (1987) DNA hybridization and avian phylogenetics. Evol. Biol. 21, 47–96.

    Google Scholar 

  • Crawford, D.J., Palmer, J.D., and Kobayashi, M. (1990) Chloroplast DNA restriction site variation and the phylogeny of Coreopsis section Coreopsis (Asteraceae). Amer. J. Bot. 77, 552–558.

    Article  CAS  Google Scholar 

  • DeBry, R.W., and Slade, N.A. (1985) Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework. Syst. Zool. 34, 21–34.

    Article  Google Scholar 

  • Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., and Rowe, T. (1989) The importance of fossils in phylogeny reconstruction. Ann. Rev. Ecol. Syst. 20, 431–460.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L., and Brown, A.H.D. (1990a) Chloroplast DNA polymorphism and phylogeny in the B genome of Glycine subgenus Glycine (Leguminosae). Amer. J. Bot. 77, 772–782.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L., Grace, J.P., and Brown, A.H.D. (1990b) Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors. Syst. Bot. 15, 173–181.

    Article  Google Scholar 

  • Farris, J.S. (1970) Methods for computing Wagner trees. Syst. Zool. 19, 83–92.

    Article  Google Scholar 

  • Farris, J.S. (1972) Estimating phylogenetic trees from distance matrices. Amer. Natur. 106, 645–668.

    Article  Google Scholar 

  • Farris, J.S. (1977a) Phylogenetic analysis under Dollo’s Law. Syst. Zool. 26, 77–88.

    Article  Google Scholar 

  • Farris, J.S. (1977b) Some further comments on LeQuesne’s methods. Syst. Zool. 26, 220–223.

    Article  Google Scholar 

  • Farris, J.S. (1983) The logical basis of phylogenetic analysis. Advances in Cladistics 2, 7–36.

    Google Scholar 

  • Felsenstein, J. (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410.

    Article  Google Scholar 

  • Felsenstein, J. (1981a) A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biol. J. Linn. Soc. 16, 183–196.

    Article  Google Scholar 

  • Felsenstein, J. (1981b) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (1983) Methods for inferring phylogenies: a statistical view. In: Numerical Taxonomy (ed. J. Felsenstein), Springer-Verlag, Berlin, pp. 315–334.

    Chapter  Google Scholar 

  • Ferris, S.D., Wilson, A.C., and Brown, W.M. (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 78, 2432–2436.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Fitch, W.M. (1977) On the problem of generating the most parsimonious tree. Amer. Natur. 111, 223–257.

    Article  Google Scholar 

  • Fitch, W.M., and Margoliash, E. (1967) Construction of phylogenetic trees. Science 155, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa, H., Kohchi, T., Sano, T., Shirai, H., Umesono, K., Inokuchi, H., Ozeki, H., and Ohyama, K. (1988) Structure and organization of Marchantia polymorpha chloroplast genome. III. Gene organization of the large single copy region from rbcL to trnI(CAU). J. Mol. Biol. 203, 333–351.

    Article  PubMed  CAS  Google Scholar 

  • Gerbi, S.A. (1985) Evolution of ribosomal DNA. In: Molecular Evolutionary Genetics (ed. R.J. Maclntyre), Plenum Press, New York, pp. 419–517.

    Chapter  Google Scholar 

  • Gray, M.W., Sankoff, D., and Cedergren, R.J. (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit RNA. Nucleic Acids Res. 12, 5837–5852.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, W. (1966) Phylogenetic Systematics (transl. D. Davis and R. Zangerl), University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Jansen, R.K., and Palmer, J.D. (1988) Phylogenetic implications of chloroplast DNA restriction site variation in the Mutisieae (Asteraceae). Amer. J. Bot. 75, 751–764.

    Article  Google Scholar 

  • Jukes, T.H., and Cantor, C.R. (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism (ed. H.N. Munro), Academic Press, New York, pp. 21–132.

    Google Scholar 

  • Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, A.G., and Farris, J.S. (1969) Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.

    Article  Google Scholar 

  • Lake, J.A. (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evol. 4, 167–191.

    PubMed  CAS  Google Scholar 

  • LeQuesne, W.J. (1974) The uniquely evolved character concept and its cladistic application. Syst. Zool. 18, 201–205.

    Article  Google Scholar 

  • Mishler, B.D., Bremer, K., Humphries, C.J., and Churchill, S.P. (1988) The use of nucleic acid sequence data in phylogenetic reconstruction. Taxon 37, 391–395.

    Article  Google Scholar 

  • Mishler, B.D., and DeLuna, E. (1991) The use of ontogenetic data in bryophyte systematics. In: Advances in Bryology Vol. 4 (ed. N.S. Miller), J. Cramer, New York, in press.

    Google Scholar 

  • Muller, J. (1981) Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142.

    Article  Google Scholar 

  • Muller, J. (1984) Significance of fossil pollen for angiosperm history. Ann. Missouri Bot. Gard. 71, 419–443.

    Article  Google Scholar 

  • Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Palmer, J.D. (1985) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: Molecular Evolutionary Genetics (ed. R.J. Maclntyre), Plenum Press, New York, pp. 131–240.

    Chapter  Google Scholar 

  • Palmer, J.D. (1991) Plastid chromosomes: structure and evolution. In: Cell Culture and Somatic Cell Genetics in Plants, Vol. 7, (eds. L. Bogorad and I.K. Vasil), in press.

    Google Scholar 

  • Palmer, J.D., Jansen, R.K., Michaels, H.J., Chase, M.W., and Manhart, J.R. (1988) Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75, 1180–1206.

    Article  Google Scholar 

  • Peacock, D., and Boulter, D. (1975) Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation. J. Mol. Biol. 95, 513–527.

    Article  PubMed  CAS  Google Scholar 

  • Raven, P.H. (1988) Onagraceae as a model of plant evolution. In: Plant Evolutionary Biology (eds. L.D. Gottlieb and S.D. Jain), Chapman and Hall, New York, pp. 85–107.

    Chapter  Google Scholar 

  • Ritland, K., and Clegg, M.T. (1987) Evolutionary analysis of plant DNA sequences. Amer. Natur. 130, S74–S100.

    Article  CAS  Google Scholar 

  • Sankoff, D., and Cedergren, R.J. (1983) Simultaneous comparison of three or more sequences related by a tree. In: Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison (eds. D. Sankoff and J.B. Kruskal), Addison-Wesley, London, pp. 253–263.

    Google Scholar 

  • Schleifer, K.H., and Ludwig, W. (1989) Phylogenetic relationships among bacteria. In: The Hierarchy of Life (eds. B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier, Amsterdam, pp. 103–117.

    Google Scholar 

  • Shinozaki, K., and Sugiura, M. (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase. Gene 20, 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, C.G., and Ahlquist, J.E. (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J. Mol. Evol. 20, 2–15.

    Article  PubMed  CAS  Google Scholar 

  • Sober, E. (1988) Reconstructing the Past: Parsimony, Evolution, and Inference, MIT Press, Cambridge, MA.

    Google Scholar 

  • Sokal, R.R., and Michener, C.D. (1958) A statistical method for evaluating systematic relationships. University of Kansas Sci. Bull. 28, 1409–1438.

    Google Scholar 

  • Swofford, D.L., and Olsen, G.J. (1990) Phylogeny reconstruction. In: Molecular Systematics (eds. D.M. Hillis and C. Moritz), Sinauer Associates, Sunderland, MA., pp. 411–501.

    Google Scholar 

  • Sytsma, K.J., and Gottlieb, L.D. (1986a) Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). Proc. Natl. Acad. Sci. USA 83, 5554–5557.

    Article  Google Scholar 

  • Sytsma, K.J., and Gottlieb, L.D. (1986b) Chloroplast DNA evolution and phylogenetic relationships in Clarkia sect. Peripetasma (Onagraceae). Evolution 40, 1248–1261.

    Article  Google Scholar 

  • Sytsma, K.J., and Smith, J.F. (1988) DNA and morphology: comparisons in the Onagraceae. Ann. Missouri Bot. Gard. 75, 1217–1237.

    Article  Google Scholar 

  • Sytsma, K.J., Smith, J.F., and Gottlieb, L.D. (1990) Phylogenetics in Clarkia (Onagraceae): restriction site mapping of chloroplast DNA. Syst. Bot. 15, 280–295.

    Article  Google Scholar 

  • Taylor, T.N. (1988) The origin of land plants: some answers, more questions. Taxon 37, 805–833.

    Article  Google Scholar 

  • Templeton, A.R. (1983a) Phylogenetic inference from restriction endonuclease cleavage maps with particular reference to the evolution of humans and the apes. Evolution 37, 221–244.

    Article  Google Scholar 

  • Templeton, A.R. (1983b) Convergent evolution and nonparametric inferences from restriction data and DNA sequences. In: Statistical Analysis of DNA Sequence Data (ed. B.W. Weir), Marcel Dekker, New York, pp. 151–179.

    Google Scholar 

  • Walker, J.W., and Walker, A.G. (1984) Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71, 464–521.

    Article  Google Scholar 

  • Williams, P.L., and Fitch, W.M. (1989) Finding the minimal changes in a given tree. In: The Hierarchy of Life (eds. B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier, Amsterdam, pp. 453–470.

    Google Scholar 

  • Wilson, A.C., Zimmer, E.A., Prager, E.M., and Kocher, T.D. (1989) Restriction mapping in the molecular systematics of mammals: a retrospective salute. In: The Hierarchy of Life (eds. B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier, Amsterdam, pp. 407–419.

    Google Scholar 

  • Yang, R.C.A., Dove, M., Seligy, V.L., Lemieux, C, Turmel, M., and Narang, S.A. (1986) Complete nucleotide sequence and mRNA-mapping of the large subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas moewusii. Gene 50, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, E.A., Hamby, R.K., Arnold, M.L., Leblanc, D.A., and Theriot, E.C. (1989) Ribosomal RNA phylogenies and flowering plant evolution. In: The Hierarchy of Life (eds. B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier, Amsterdam, pp. 205–214.

    Google Scholar 

  • Zurawski, G., and Clegg, M.T. (1987) Evolution of higher plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Ann. Rev. Plant Physiol. 38, 391–418.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Pamela S. Soltis Douglas E. Soltis Jeff J. Doyle

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albert, V.A., Mishler, B.D., Chase, M.W. (1992). Character-State Weighting for Restriction Site Data in Phylogenetic Reconstruction, with an Example from Chloroplast DNA. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (eds) Molecular Systematics of Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3276-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3276-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-02241-8

  • Online ISBN: 978-1-4615-3276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics