Skip to main content

Estimation of 2-D Motion Fields from Image Sequences with Application to Motion-Compensated Processing

  • Chapter
Motion Analysis and Image Sequence Processing

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 220))

Abstract

In this chapter we are concerned with the estimation of 2-D motion from time-varying images and with the application of the computed motion to image sequence processing. Our goal for motion estimation is to propose a general formulation that incorporates object acceleration, nonlinear motion trajectories, occlusion effects and multichannel (vector) observations. To achieve this objective we use Gibbs-Markov models linked together by the Maximum A Posteriori Probability criterion which results in minimization of a multiple-term cost function. The specific applications of motion-compensated processing of image sequences are prediction, noise reduction and spatiotemporal interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Abdelqader, S. Rajala, W. Snyder, and G. Bilbro, “Energy minimization approach to motion estimation,” Signal Processing, vol. 28, pp. 291–309, Sept. 1992.

    Article  MATH  Google Scholar 

  2. P. Anandan, “A unified perspective on computational techniques for the measurement of visual motion,” in Proc. IEEE Int. Conf. Computer Vision, pp. 219–230, June 1987.

    Google Scholar 

  3. C. Bergeron and E. Dubois, “Gradient-based algorithms for block-oriented MAP estimation of motion and application to motion-compensated temporal interpolation,” IEEE Trans. Circuits Syst. Video Technol, vol. 1, pp. 72–85, Mar. 1991.

    Article  Google Scholar 

  4. M. Bertero, T. Poggio, and V. Torre, “Ill-posed problems in early vision,” Proc. IEEE, vol. 76, pp. 869–889, Aug. 1988.

    Article  Google Scholar 

  5. J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Statist. Soc, vol. B 36, pp. 192–236, 1974.

    MathSciNet  Google Scholar 

  6. J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist. Soc, vol. B 48, pp. 259–279, 1986.

    MathSciNet  Google Scholar 

  7. H. Boutrouille, “Réduction du niveau de bruit dans les séquences d’images video par filtrage compensé par le mouvement,” Tech. Rep. 91–29, INRS-Télécommuni-cations, Sept. 1991.

    Google Scholar 

  8. P. Burt, “Fast filter transforms for image processing,” Cotnpui. Vision, Graphics Image Process., vol. 16, pp. 20–51, 1981.

    Google Scholar 

  9. R. Buschmann, “Improvement of optical flow estimation by HCF control and hierarchical block matching,” in Proc. IEEE Workshop Vis. Sig. Process. Comm., pp. 270–273, Sept. 1992.

    Google Scholar 

  10. C. Cafforio and F. Rocca, “Methods for measuring small displacements of television images,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 573–579, Sept. 1976.

    Article  Google Scholar 

  11. P. Chou and C. Brown, “Multimodal reconstruction and segmentation with Markov random fields and HCF optimization,” in Proc. Image Understanding Workshop, pp. 214–221, Apr. 1988.

    Google Scholar 

  12. R. Depommier and E. Dubois, “Motion-compensated temporal prediction for interlaced image sequences,” in Proc. IEEE Workshop Vis. Sig. Process. Comm., pp. 264–269, Sept. 1992.

    Google Scholar 

  13. R. Depommier and E. Dubois, “Motion estimation with detection of occlusion areas,” in Proc. IEEE Int. Conf. on Acousl. Speech Signal Process., pp. III.269–III.272, Mar. 1992.

    Google Scholar 

  14. E. Dubois, “The sampling and reconstruction of time-varying imagery with application in video systems,” Proc. IEEE, vol. 73, pp. 502–522, Apr. 1985.

    Article  Google Scholar 

  15. E. Dubois, “Motion-compensated filtering of time-varying images,” Mullidim. Syst. Sig. Process., vol. 3, pp. 211–239, 1992.

    Article  Google Scholar 

  16. E. Dubois and S. Sabri, “Noise reduction in image sequences using motion-compensated temporal filtering,” IEEE Trans. Commun., vol. COM-32, pp. 826–831, July 1984.

    Article  Google Scholar 

  17. W. Enkelmann, “Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences,” Comput. Vision, Graphics Image Process., vol. 43, pp. 150–177,1988.

    Article  Google Scholar 

  18. W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Machine Iniell, vol. 13, pp. 891–905, Sept. 1991.

    Article  Google Scholar 

  19. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.

    Article  Google Scholar 

  20. S. Geman and C.-R. Hwang, “Diffusions for global optimization,” SIAM J. Control and Optimization, vol. 24, pp. 1031–1043, Sept. 1986.

    Article  MathSciNet  MATH  Google Scholar 

  21. General Instruments Corporation, DigiCipher HDTV system description, Aug. 1991.

    Google Scholar 

  22. M. Gennert and S. Negahdaripour, “Relaxing the brightness constancy assumption in computing optical flow,” Tech. Rep. 975, MIT Artificial Intelligence Laboratory, June 1987.

    Google Scholar 

  23. F. Glazer, Hierarchical motion detection. PhD thesis, Univ. of Massachusetts, Dept. Comp. Inform. Sci., Feb. 1987.

    Google Scholar 

  24. D. Heeger, “Optical flow using spatiotemporal filters,” Intern. J. Comput. Vision, vol. 1, pp. 279–302, 1987.

    Article  Google Scholar 

  25. F. Heitz, P. Perez, and P. Bouthemy, “Parallel visual motion analysis using multi-scale Markov Random Fields,” in Proc. IEEE Workshop on Visual Motion, pp. 30–35, Oct. 1991.

    Google Scholar 

  26. E. Hildreth, “Computations underlying the measurement of visual motion,” Artificial Intell., vol. 23, pp. 309–354, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Horn and B. Schunck, “Determining optical flow,” Artificial Intell., vol. 17, pp. 185–203, 1981.

    Article  Google Scholar 

  28. J. Hutchinson, C. Koch, J. Luo, and C. Mead, “Computing motion using analog and binary resistive networks,” Computer, vol. 21, pp. 52–63, Mar. 1988.

    Article  Google Scholar 

  29. A. Jain, Fundamentals of digital image processing. Information and System Sciences Series, Prentice Hall, 1989.

    Google Scholar 

  30. J. Jain and A. Jain, “Displacement measurement and its application in interframe image coding,” IEEE Trans. Commun., vol. COM-29, pp. 1799–1808, Dec. 1981.

    Article  Google Scholar 

  31. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-29, pp. 1153–1160, Dec. 1981.

    Article  MathSciNet  Google Scholar 

  32. S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671–680, May 1983.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Konrad, Bayesian estimation of motion fields from image sequences. PhD thesis, McGill University, Dept. Electr. Eng., June 1989.

    Google Scholar 

  34. J. Konrad, “Use of colour in gradient-based estimation of dense two-dimensional motion,” in Proc. Conf. Vision Interface VI′92, pp. 103–109, May 1992.

    Google Scholar 

  35. J. Konrad and E. Dubois, “Estimation of image motion fields: Bayesian formulation and stochastic solution,” in Proc. IEEE Int. Conf. on Acoust. Speech Signal Process., pp. 1072–1075, Apr. 1988.

    Google Scholar 

  36. J. Konrad and E. Dubois, “Multigrid Bayesian estimation of image motion fields using stochastic relaxation,” in Proc. IEEE Int. Conf. Computer Vision, pp. 354–362, Dec. 1988.

    Google Scholar 

  37. J. Konrad and E. Dubois, “Bayesian estimation of discontinuous motion in images using simulated annealing,” in Proc. Conf. Vision Interface VI′89, pp. 51–60, June 1989

    Google Scholar 

  38. J. Konrad and E. Dubois, “Use of colour information in Bayesian estimation of 2-D motion,” in Proc. IEEE Int. Conf. on Acousi. Speech Signal Process., pp. 2205–2208, Apr. 1990.

    Google Scholar 

  39. J. Konrad and E. Dubois, “Comparison of stochastic and deterministic solution methods in Bayesian estimation of 2D motion,” Image & Vision Computing, vol. 9, pp. 215–228, Aug. 1991.

    Article  Google Scholar 

  40. J. Konrad and E. Dubois, “Bayesian estimation of motion vector fields,” IEEE Trans. Pattern Anal. Machine Intell, vol. PAMI-14, pp. 910–927, Sept. 1992

    Article  Google Scholar 

  41. D. Le Gall, “MPEG: A video compression standard for multimedia applications,” Communications ACM, vol. 34, pp. 46–58, Apr. 1991.

    Article  Google Scholar 

  42. M. Liou, “Overview of the p x 64 kbits/s video coding standard,” Communications ACM, vol. 34, pp. 59–63, Apr. 1991.

    Article  Google Scholar 

  43. N. Metropolis, A. Rosenbluth, M. Rosenbluth, H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087–1092, June 1953.

    Article  Google Scholar 

  44. A. Mitiche, Y. Wang, and J. Aggarwal, “Experiments in computing optical flow with the gradient-based, multiconstraint method,” Pattern Recognition, vol. 20, no. 2, pp. 173–179, 1987.

    Article  Google Scholar 

  45. C. Moloney and E. Dubois, “Estimation of motion fields from image sequences with illumination variation,” in Proc. IEEE Int. Conf. on Acoust. Speech Signal Process., pp. 2425–2428, May 1991.

    Google Scholar 

  46. D. Murray and B. Buxton, “Scene segmentation from visual motion using global optimization,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 220–228, Mar. 1987.

    Article  Google Scholar 

  47. H.-H. Nagel and W. Enkelmann, “An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 565–593, Sept. 1986.

    Article  Google Scholar 

  48. A. Netravali and J. Robbins, “Motion-compensated television coding: Part I,” Bell Syst. Tech. J., vol. 58, pp. 631–670, Mar. 1979.

    MATH  Google Scholar 

  49. A. Nguyen and E. Dubois, “Adaptive interlaced to progressive image conversion,” in Proc. Int. Workshop on HDTV, Nov. 1992.

    Google Scholar 

  50. A. Nguyen and E. Dubois, “Spatial directional interpolation using steerable filters,” in Proc. Canadian Conf. Elecir. Comp. Eng., pp. MA4.8.1–MA4.8.4, Sept. 1992.

    Google Scholar 

  51. H. Nguyen and E. Dubois, “Representation of motion fields for image coding,” in Proc. Picture Coding Symposium, pp. 8.4.1–8.4.5, 1990.

    Google Scholar 

  52. A. Nieminen, P. Heinonen, and Y. Neuvo, “A new class of detail-preserving filters for image processing,” IEEE Trans. Pattern Anal. Machine Intel!., vol. PAMI-9, pp. 74–90, Jan. 1987.

    Article  Google Scholar 

  53. T. Reuter, “Standards conversion using motion compensation,” Signal Processing, vol. 16, pp. 73–82, 1989.

    Article  Google Scholar 

  54. M. Sezan, M. Ozkan, and S. Fogel, “Temporally adaptive filtering of noisy image sequences using a robust motion estimation algorithm,” in Proc. IEEE Int. Conf. on Acoust. Speech Signal Process., pp. 2429–2432, May 1991.

    Google Scholar 

  55. F. Spitzer, “Markov random fields and Gibbs ensembles,” Amer. Math. Mon., vol. 78, pp. 142–154, Feb. 1971.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Stiller and D. Lappe, “Gain/cost controled displacement-estimation for image sequence coding,” in Proc. IEEE Int. Conf. on Acoust. Speech Signal Process., pp. 2729–2732, May 1991.

    Google Scholar 

  57. G. Thomas, “HDTV bandwidth reduction by adaptive subsampling and motion-compensated DATV techniques,” SMPTE J., vol. 96, pp. 460–465, May 1987.

    Article  Google Scholar 

  58. O. Tretiak and L. Pastor, “Velocity estimation from image sequences with second order differential operators,” in Proc. IEEE Int. Conf. Pattern Recognition, pp. 16–19, July 1984.

    Google Scholar 

  59. K. Wohn, L. Davis, and P. Thrift, “Motion estimation based on multiple local constraints and nonlinear smoothing,” Pattern Recognition, vol. 16, no. 6, pp. 563–570, 1983.

    Article  Google Scholar 

  60. Zenith and AT&T, Digital Spectrum Compatible: Technical details, Sept. 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubois, E., Konrad, J. (1993). Estimation of 2-D Motion Fields from Image Sequences with Application to Motion-Compensated Processing. In: Sezan, M.I., Lagendijk, R.L. (eds) Motion Analysis and Image Sequence Processing. The Springer International Series in Engineering and Computer Science, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3236-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3236-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6422-1

  • Online ISBN: 978-1-4615-3236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics