Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 65))

Abstract

The idea that cancer is a genetic disease is over 80 years old [1]; that cancer is also a progressive genetic disease is a more recent, but fundamentally critical, expansion of this idea [2]. Due to increasingly sensitive techniques and novel methodological advancements, the supposition that tumors form because of a progressive development in the number and types of genetic defects is being confirmed at the molecular level [3]. Molecular geneticists are now faced with two formidable tasks. The first is to decipher the precise nature and sequence of genetic perturbations that characterize the malignant process at each of its progressive stages. The second is to define the biochemical and biological impact of these genetic events on the interdependent mechanisms that govern the proliferation, differentiation, and intercellular relationships of the normal cell. In this regard, human malignant melanoma provides a particularly good model for studying progressive etiologically relevant events, since clinical and pathological observations have defined cutaneous lesions that represent sequential steps in the progression to melanoma [46]. Moreover, cells representing these stages (e.g., normal melanocytes, dysplastic nevi, primary and metastatic melanomas) can be cultured in sufficient quantities to permit a wide range of experiments, including the development of in vitro models of transformation. Consistent abnormalities in chromosomes 1, 6, 7, and 9, as well as alterations in antigen expression, biological characteristics, differentiation programs, growth factor requirements, and proto-oncogene expression and extinction, have been observed to accompany tumor progression of the melanocyte [710].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boveri T. 1914. Zur Frager der Entstehung Maligner Tumoren. Jena: Gustav Fizscher, pp 1–64.

    Google Scholar 

  2. Weinberg RA. 1989. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res 49:3713–3721.

    PubMed  CAS  Google Scholar 

  3. Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–767.

    PubMed  CAS  Google Scholar 

  4. Clark WH Jr, Elder DE, Guerry D 4th, Epstein MN, Greene MH, van Horn M. 1984. A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15:1147–1165.

    PubMed  Google Scholar 

  5. Kath R, Rodeck U, Menssen HD, et al. 1989. Tumor progression in the human melanocytic system. Anticancer Res 9:865–872.

    PubMed  CAS  Google Scholar 

  6. Elder DE, Rodeck U, Thurin J, et al. 1989. Antigenic profile of tumor progression stages in human melanocytic nevi and melanomas. Cancer Res 49:5091–5096.

    PubMed  CAS  Google Scholar 

  7. Balaban GB, Herlyn M, Clark WH Jr, Nowell PC. 1986. Karyotypic evolution in human malignant melanoma. Cancer Genet Cytogenet 19:113–122.

    PubMed  CAS  Google Scholar 

  8. Richmond A, Fine R, Murray D, Lawson DH, Priest JH. 1986. Growth factor and cytogenetic abnormalities in cultured nevi and malignant melanomas. J Invest Dermatol 86:295–302.

    PubMed  CAS  Google Scholar 

  9. Cowan JM, Halaban R, Francke U. 1988. Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst 80:1159–1164.

    PubMed  CAS  Google Scholar 

  10. Pedersen MI, Wang N. 1989. Chromosomal evolution in the progression and metastasis of human malignant melanoma. Cancer Gene Cytogene 41:185–201.

    CAS  Google Scholar 

  11. McClay EF, Hunger K. 1991. Melanoma: New biology; new therapy. Critical Rev Oncol/ Hematol 11:299–314.

    CAS  Google Scholar 

  12. Sober AJ, Lew RA, Koh HK, Barnhill RL. 1991. Epidemiology of cutaneous melanoma. An update. Dermatol Clin 9:617–629.

    PubMed  CAS  Google Scholar 

  13. Roush GC, Schymura MJ, Holford TR. 1985. Risk for cutaneous melanoma in recent Connecticut birth cohorts. Am J Public Health 75:679–682.

    PubMed  CAS  Google Scholar 

  14. 1987. Cancer statistics. CA-A Cancer J Clin 37:12–13.

    Google Scholar 

  15. Breslow A. 1970. Thickness cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172:902–907.

    PubMed  CAS  Google Scholar 

  16. Clark WH, From L, Bernardino EA, Mihm MC. 1969. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705.

    PubMed  Google Scholar 

  17. Clark WH, Elder DE, Guerry D, et al. 1989. Model predicting survival in stage 1 melanoma based on tumor progression. J Natl Cancer Inst 81:1893.

    PubMed  Google Scholar 

  18. Herzberg AJ, Kerns BJ, Borowitz MJ, Scigler HF, Kinney RB. 1991. DNA ploidy of malignant melanoma determined by image cytometry of fresh frozen and paraffinembedded tissue. J Cutan Pathol 18:440–448.

    PubMed  CAS  Google Scholar 

  19. Rowley JD. 1990. Molecular cytogenetics: Rosetta stone for understanding cancer — twenty-ninth G.H.A. Clowes Memorial Award Lecture. Cancer Res 50:3816–3825.

    PubMed  CAS  Google Scholar 

  20. Friedlander ML, Hedley DW, Taylor IW. 1984. Clinical and biological significance of aneuploidy in human tumours. J Clin Pathol 37:961–974.

    PubMed  CAS  Google Scholar 

  21. Seckinger D, Sugarbaker E, Frankfurt 0.1989. DNA content in human cancer. Application in pathology and clinical medicine. Arch Pathol Lab Med 113:619–626.

    PubMed  CAS  Google Scholar 

  22. Frankfurt OS, Slocum HK, Rustum YM, et al. 1984. Flow cytometric analysis of DNA aneuploidy in primary and metastatic human solid tumors. Cytometry 5:71–80.

    PubMed  CAS  Google Scholar 

  23. Trent JM, Meyskens FL, Salmon SE, et al. 1990. Relation of cytogenetic abnormalities and clinical outcome in metastatic melanoma. N Engl J Med 322:1508–1511.

    PubMed  CAS  Google Scholar 

  24. Muhonen T, Pyrhonen S, Laasonen A, Asko-Seljavaara S, Franssila K. 1991. DNA aneuploidy and low S-phase fraction as favorable prognostic signs in metastatic melanoma. Br J Cancer 64:749–752.

    PubMed  CAS  Google Scholar 

  25. Hansson J, Tribukait B, Lowensohn R, Ringborg U. 1982. Flow cytofluorometric DNA analyses of metastases of human malignant melanomas. Anal Quant Cytol 4:99.

    PubMed  CAS  Google Scholar 

  26. Sondergaard K, Larsen JK, Moller U, Christensen B, Hou-Jense K. 1983. DNA ploidycharacteristics of human malignant melanoma analyzed by flow cytometry and compared with histology and clinical course. Virchows Arch 42:43–52.

    CAS  Google Scholar 

  27. Von Roenn JH, Khier SM, Wolter JM, et al. 1986. The significance of DNA abnormalities in primary malignant melanoma and naevi — retrospective flow cytometric study. Cancer Res 46:3192–3195.

    Google Scholar 

  28. Buchner T, Hiddemann W, Wormann B, et al. 1985. Differentiation patterns of DNA aneuploidy in human malignancies. Pathol Rev Pract 179:310–317.

    CAS  Google Scholar 

  29. Kheir SM, Bines SD, Von Roenn JH, Soong SJ, Urist MM, Coon JS. 1988. Prognostic significance of DNA aneuploidy in stage 1 cutaneous melanoma. Ann Surg 207:455.

    PubMed  CAS  Google Scholar 

  30. Lindholm C, Hofer PA, Jonsson H, Tribukait B. 1989. Row DNA-cytometric findings of paraffin-embedded primary cutaneous melanomas related to prognosis. Virchows Archiv (Cell Pathol) 58:147.

    CAS  Google Scholar 

  31. Silver HKB, Karim KA, Le Riche J, et al. 1989. Nuclear DNA, serum sialic acid and measured depth in malignant melanoma for predicting disease recurrence and survival. Int J Cancer 44:31.

    PubMed  CAS  Google Scholar 

  32. Zaloudik J, Moore M, Ghosh AK, Mechl Z, Rejthar A. 1988. DNA content and MHC class II antigen expression in malignant melanoma: Clinical course. J Clin Pathol 41:1078.

    PubMed  CAS  Google Scholar 

  33. Sorensen FB, Kristensen IB, Grymer F, Jakobsen A. 1990. DNA-index and stereological estimation of nuclear volume in primary and metastatic malignant melanoma: A comparative study with analysis of heterogeneity. APMIS 98:61.

    PubMed  CAS  Google Scholar 

  34. Slater SD, Cook MG, Fisher C, Wright NAW, Foster CS. 1991. A comparative study of proliferation indices and ploidy in dysplastic naevi and malignant melanomas using flow cytometry. Histopathology 19:337–344.

    PubMed  CAS  Google Scholar 

  35. Elder DB. 1985. The dysplastic naevus. Pathology 17:291–297.

    PubMed  CAS  Google Scholar 

  36. Newton JA, Camplejohn RS, McGibbon DH. 1988. The flow cytometry of melanocytic skin lesions. Br J Cancer 58:606–609.

    PubMed  CAS  Google Scholar 

  37. Stenzinger W, Suter L, Schumann J. 1984. DNA aneuploidy in congenital melanocytic naevi. Suggestive evidence for premalignant changes. J Invest Dermatol 82:569–572.

    PubMed  CAS  Google Scholar 

  38. Schmiegelow P, Schroiff R, Breitbart EW, Janner M. 1986. Malignant melanoma — its precursors and its topography of proliferation, DNA-feulgen cytophotometry and mitosis index. Virchows Archiv 409:47–59.

    PubMed  CAS  Google Scholar 

  39. Bergman W, Ruiter DJ, Scheffer E, Van Vloten WA. 1988. Melanocytic atypia in dysplastic nevi. Immunohistochemical and cytophotric analysis. Cancer 61:660–666.

    Google Scholar 

  40. Barnhill RL. 1991. Current status of the dysplastic melanocytic nevus. J Cutan Pathol 18:147–159.

    PubMed  CAS  Google Scholar 

  41. Lloyd KO, Old LJ. 1989. Human monoclonal antibodies to glycolipids and other carbohydrate antigens: Dissection of the humoral immune response in cancer patients. Cancer Res 49:3445–3451.

    PubMed  CAS  Google Scholar 

  42. Look AT, Hayes FA, Nitschke R, McWilliams NB, Green AA. 1984. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N Engl J Med 311:231–235.

    PubMed  CAS  Google Scholar 

  43. Shapiro JR, Shapiro WR. 1985. The subpopulations and isolated cell types of freshly resected high grade human gliomas: Their influence on the tumor’s evolution in vivo and behavior and therapy in vitro. Cancer Metastasis Rev 4:107–124.

    PubMed  CAS  Google Scholar 

  44. Yung WK, Shapiro JR, Shapiro WR. 1982. Heterogeneous chemosensitivities of subpopulations of human glioma cells in culture. Cancer Res 42:992–998.

    PubMed  CAS  Google Scholar 

  45. Bishop JM. 1987. The molecular genetics of cancer. Science 235:305–311.

    PubMed  CAS  Google Scholar 

  46. Knudson AG Jr. 1989. Hereditary cancers disclose a class of cancer genes. Cancer 63:1888–1891.

    PubMed  Google Scholar 

  47. Sandberg AA, Turc Carel C, Gemmill RM. 1988. Chromosomes in solid tumors and beyond. Cancer Res 48:1049–1059.

    PubMed  CAS  Google Scholar 

  48. Heim S, Mitelman F. 1989. Primary chromosome abnormalities in human neoplasia. Adv Cancer Res 52:1–43.

    PubMed  CAS  Google Scholar 

  49. Quinn LA, Woods LK, Merrick SB, Arabasz NM, Moore GE. 1977. Cytogenetic analysis of twelve human malignant melanoma cell lines. J Natl Cancer Inst 59:301–305.

    Google Scholar 

  50. Becher R, Gibas Z, Karakousis C, Sandberg AA. 1983. Nonrandom chromosome changes in malignant melanoma. Cancer Res 43:5010–5016.

    PubMed  CAS  Google Scholar 

  51. Limon J, Dal Cin P, Sait SN, Karakousis C, Sandberg AA. 1988. Chromosome changes in metastatic human melanoma. Cancer Genet Cytogenet 30:201–211.

    PubMed  CAS  Google Scholar 

  52. Parmiter AH, Balaban G, Clark WH Jr, Nowell PC. 1988. Possible involvement of the chromosome region 10q24-q26 in early stages of melanocytic neoplasia. Cancer Genet Cytogenet 30:313–317.

    PubMed  CAS  Google Scholar 

  53. Fountain JW, Bale SJ, Housman DE, Dracopoli NC. 1990. Genetics of melanoma. In LM Franks (ed), Cancer Surveys: Advances and Prospects in Clinical, Epidemiological and Laboratory Oncology. London: Oxford University Press, pp 645–671.

    Google Scholar 

  54. Cowan JM, Francke U. 1991. Cytogenetic analysis in melanoma and nevi. Cancer Treat Res 54:3–16.

    PubMed  CAS  Google Scholar 

  55. Ohyashiki JH, Ohyashiki K, Gibas Z, Karakousis C, Sandberg AA. 1986. Cytogenetic findings in a malignant melanoma and its derived cell line. Cancer Genet Cytogenet 23:77–85.

    PubMed  CAS  Google Scholar 

  56. Dodd I, Nunn B, Robinson JH. 1988. Isolation, identification and pharmacokinetic properties of human tissue-type plasminogen activator species: Possible localisation of a clearance recognition site. Thromb Haemost 59:523–528.

    PubMed  CAS  Google Scholar 

  57. Heim S, Mandahl N, Arheden K, et al. 1988. Multiple karyotypic abnormalities, including structural rearrangements of 11p, in cell lines from malignant melanomas. Cancer Genet Cytogenet 35:5–20.

    PubMed  CAS  Google Scholar 

  58. Kacker RK, Giovanella BC, Pathak S. 1990. Consistent karyotypic abnormalities in human malignant melanomas. Anticancer Res 10:859–871.

    PubMed  CAS  Google Scholar 

  59. Cavenee WK, Dryja TP, Phillips RA, et al. 1983. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784.

    PubMed  CAS  Google Scholar 

  60. Friend SH, Bernards R, Rogelj S, et al. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646.

    PubMed  CAS  Google Scholar 

  61. Riccardi VM, Sujansky E, Smith AC, Francke U. 1978. Chromosomal imbalance in the Aniridia-Wilms’ tumor association: lip interstitial deletion. Pediatrics 61:604–610.

    PubMed  CAS  Google Scholar 

  62. Fearon ER, Vogelstein B, Feinberg AP. 1984. Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours. Nature 309:176–178.

    PubMed  CAS  Google Scholar 

  63. Call KM, Glaser T, Ito CY, et al. 1990. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520.

    PubMed  CAS  Google Scholar 

  64. Koprowski H, Herlyn M, Balaban G, Parmiter A, Ross A, Nowell P. 1985. Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11:297–302.

    PubMed  CAS  Google Scholar 

  65. Greene MH, Fraumeni JF Jr. 1979. The hereditary variant of malignant melanoma. In WH Clark Jr, LI Goldman, MJ Mastrangelo (eds), Human Malignant Melanoma. New York: Grune Stratton, pp 139–166.

    Google Scholar 

  66. Elder DE, Greene MH, Bondi EE, Clark WH 1981. Acquired melanocytic nevi and melanoma — the dysplastic nevus syndrome. In AB Ackerman (ed), Pathology of Malignant Melanoma. New York: Masson, pp 185–215.

    Google Scholar 

  67. Bale SJ, Chakravarti A, Greene MH. 1986. Cutaneous malignant melanoma and familial dysplastic nevi: Evidence for autosomal dominance and pleiotropy. Am J Hum Genet 38:188–196.

    PubMed  CAS  Google Scholar 

  68. Bale SJ, Dracopoli NC, Tucker MA, et al. 1989. Mapping the gene for hereditary cutaneous malignant melanoma — dysplastic nevus to chromosome lp. N Engl J Med 320:1367–1372.

    PubMed  CAS  Google Scholar 

  69. Greene MH, Goldin LR, Clark WH, et al. 1983. Familial cutaneous malignant melanoma: Autosomal dominant trait possibly linked to the Rh locus. Proc Natl Acad Sci USA 80:6071–6075.

    PubMed  CAS  Google Scholar 

  70. Dracopoli NC, O’Connell P, Eisner TL, et al. 1991. The CEPH consortium map of human chromosome 1. Genomics 9:686–700.

    PubMed  CAS  Google Scholar 

  71. van Haeringen A, Bergman W, Nelen MR, et al. 1989. Exclusion of the dysplastic nevus syndrome (DNS) locus from the short arm of chromosome 1 by linkage studies in Dutch families. Genomics 5:61–64.

    PubMed  Google Scholar 

  72. Cannon Albright LA, Goldgar DE, Wright EC, et al. 1990. Evidence against the reported linkage of the cutaneous melanoma-dysplastic nevus syndrome locus to chromosome Ip36. Am J Hum Genet 46:912–918.

    PubMed  CAS  Google Scholar 

  73. Kefford RF, Salmon J, Shaw HM, Donald JA, McCarthy WH. 1991. Hereditary melanoma in Australia. Variable association with dysplastic nevi and absence of genetic linkage to chromosome 1p. Cancer Genet Cytogenet 51:45–55.

    PubMed  CAS  Google Scholar 

  74. Nancarrow DJ, Palmer JM, Walters MK, et al. 1992. Exclusion of the familial melanoma locus (MLM) from the PND/D1S47 and MYCL1 regions of chromosome arm 1p in 7 Australian pedigrees. Genomics 12:18–25.

    PubMed  CAS  Google Scholar 

  75. Cavenee WK, Dryja TP, Phillips RA, et al. 1983. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784.

    PubMed  CAS  Google Scholar 

  76. Fearon ER, Cho KR, Nigro JM, et al. 1990. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56.

    PubMed  CAS  Google Scholar 

  77. Dracopoli NC, Houghton AN, Old LJ. 1985. Loss of polymorphic restriction fragments in malignant melanoma: Implications for tumor heterogeneity. Proc Natl Acad Sci USA 82:1470–1474.

    PubMed  CAS  Google Scholar 

  78. Dracopoli NC, Alhadeff B, Houghton AN, Old LJ. 1987. Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Res 47:3995–4000.

    PubMed  CAS  Google Scholar 

  79. Dracopoli NC, Harnett P, Bale SJ, et al. 1989. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression. Proc Natl Acad Sci USA 86:4614–4618.

    PubMed  CAS  Google Scholar 

  80. Millikin D, Meese E, Vogelstein B, Witkowski C, Trent J. 1991. Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res 51:5449–5453.

    PubMed  CAS  Google Scholar 

  81. Fountain JW, Karayiorgou M, Ernstoff MS, et al. 1992. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci USA 89:10557–10561.

    PubMed  CAS  Google Scholar 

  82. Jonasson J, Povey S, Harris H. 1977. The analysis of malignancy by cell fusion: VII. Cytogenetic analysis of hybrids between malignant and diploid cells and of tumors derived from them. J Cell Sci 24:217–240.

    PubMed  CAS  Google Scholar 

  83. Evans EP, Burtenshaw MD, Brown BB, Hennion R, Harris H. 1982. The analysis of malignancy by cell fusion. IX. Re-examination and clarification of the cytogenetic problem. J Cell Sci 56:113–130.

    PubMed  CAS  Google Scholar 

  84. Harris H. 1985. Suppression of malignancy in hybrid cells: The mechanism. J Cell Sci 79:83–94.

    PubMed  CAS  Google Scholar 

  85. Straus DS, Mohandas T. 1987. Growth suppression of hybrids between transformed cells and normal fibroblasts in serum-free medium: Correlation with retention of human chromosomes. Somat Cell Mol Genet 13:587–596.

    PubMed  CAS  Google Scholar 

  86. Copeman MC, Harris H. 1988. The extracellular matrix of hybrids between melanoma cells and normal fibroblasts. J Cell Sci 91:281–286.

    PubMed  CAS  Google Scholar 

  87. Trent JM, Stanbridge EJ, McBride HL, et al. 1990. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247:568–571.

    PubMed  CAS  Google Scholar 

  88. Roderick TH, Davisson MT. 1984. Linkage map of the mouse. Mouse News Lett 71:8–10.

    Google Scholar 

  89. van der Korput JGM, Hilkens J, Kroezen V, Zwarthoff EC, Trapman J. 1985. Mouse interferon alpha and beta genes are linked at the centromere proximal region of chromosome 4. J Gen Virol 66:493–502.

    PubMed  Google Scholar 

  90. Nadeau JH, Berger FG, Kelley KA, Pitha PM, Sidman CL, Worrall N. 1986. Rearrangement of genes located on homologous chromosomal segments in mouse and man: The location of genes for alpha and beta-interferon, alpha-1 acid glycoprotein-1 and 2 and aminolevulinate dehydratase on mouse chromosome 4. Genetics 104:1239–1255.

    Google Scholar 

  91. Hecht F, Hecht BK-M. 1988. Chromosome arrangements in dysplastic nevus syndrome predisposing to malignant melanoma. Cancer Genet Cytogenet 35:73–78.

    PubMed  CAS  Google Scholar 

  92. Ochi H, Wake N, Rao U, et al. 1984. Serial cytogenetic analysis of a recurrent malignant melanoma. Cancer Genet Cytogenet 11:175–183.

    PubMed  CAS  Google Scholar 

  93. Albino AP, Le Strange R, Oliff AI, Furth ME, Old LJ. 1984. Transforming ras genes from human melanoma: A manifestation of tumour heterogeneity? Nature 308:69–72.

    PubMed  CAS  Google Scholar 

  94. Pedersen MI, Bennett JW, Wang N. 1986. Nonrandom chromosome structural aberrations and oncogene loci in human malignant melanoma. Cancer Genet Cytogenet 20:11–27.

    PubMed  CAS  Google Scholar 

  95. Malkin D, Li FP, Strong LC, et al. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238.

    PubMed  CAS  Google Scholar 

  96. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH. 1990. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348:747–749.

    PubMed  CAS  Google Scholar 

  97. Finger LR, Kagan J, Christopher G, et al. 1989. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA 86:5039–5043.

    PubMed  CAS  Google Scholar 

  98. Eipers PG, Barnoski BL, Han J, Carroll AJ, Kidd VJ. 1991. Localization of the expressed human p58 protein kinase chromosomal gene to chromosome 1p36 and a highly related sequence to chromosome 15. Genomics 11:621–629.

    PubMed  CAS  Google Scholar 

  99. Sokova O, Kirichenko OP, Mukeria AF, Demidov LV, Chebotarev AN, Kopnin BP. 1992. Enhanced expressed of 1p32 and 1p22 fragile sites in lymphocytes in cutaneous malignant melanoma. Cancer Genet Cytogenet 58:24–28.

    PubMed  CAS  Google Scholar 

  100. Bunnell B, Heath LS, Adams DE, Lahti JM, Kidd VJ. 1990. Elevated expression of a p58 protein kinase leads to changes in the CHO cell cycle. Proc Natl Acad Sci USA 87:7467–7471.

    PubMed  CAS  Google Scholar 

  101. Bunnell BA, Adams DE, Kidd VJ. 1990. Transient expression of a p58 protein kinase cDNA enhances mammalian glycosyltransferase activity. Biochem Biophys Res Comm 171:196–203.

    PubMed  CAS  Google Scholar 

  102. Barletta C, Pelicci PG, Kenyon LC, Smith SD, Dalla Favera R. 1987. Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas. Science 235:1064–1067.

    PubMed  CAS  Google Scholar 

  103. Linnenbach AJ, Huebner K, Reddy EP, et al. 1988. Structural alteration in the MYB protooncogene and deletion within the gene encoding alpha-type protein kinase C in human melanoma cell lines. Proc Natl Acad Sci USA 85:74–78.

    PubMed  CAS  Google Scholar 

  104. Meese E, Meltzer PS, Witkowski CM, Trent JM. 1989. Molecular mapping of the oncogene myb and rearrangements in malignant melanoma. Genes Chromosom Cancer 1:88–94.

    PubMed  CAS  Google Scholar 

  105. Tsui L-C, Farrall M, Donic-Keller H. 1989. Report of the committee on the genetic constitution of chromosome 7 and 8. Cytogenet Cell Genet 51:166–201.

    PubMed  CAS  Google Scholar 

  106. Collard JG, van de Poll M, Scheffer A, et al. 1987. Location of genes involved in invasion and metastasis on human chromosome 7. Cancer Res 47:6666–6670.

    PubMed  CAS  Google Scholar 

  107. Trent JM, Olson S, Lawn RM. 1982. Chromosomal localization of human leukocyte, fibroblast, and immune interferon genes by means of in situ hybridization. Proc Natl Acad Sci USA 79:7809–7813.

    PubMed  CAS  Google Scholar 

  108. Diaz MO, Le Beau MM, Pitha P, Rowley JD. 1986. Interferon and c-ets-1 genes in the translocation (9;11)(p22;q23) in human acute monocytic leukemia. Science 231:265–267.

    PubMed  CAS  Google Scholar 

  109. Abbott C, Jackson IJ, Carritt B, Povey S. 1991. The human homolog of the mouse brown gene maps to the short arm of chromosome 9 and extends the known region of homology with mouse chromosome 4. Genomics 11:471–473.

    PubMed  CAS  Google Scholar 

  110. Murty VVVS, Bouchard B, Mathew S, Vijayasaradhi S, Houghton AN. 1992. Assignment of the human b(brown) locus to chromosome region 9p23 by nonradioactive in situ hybridization. Genomics, in press.

    Google Scholar 

  111. Duncan AMV, McCorquodale MM, Morgan C, Rutherford TJ, Appert HE, McCorquodale DJ. 1986. Chromosomal localization of the gene for human galactosyltransferase (GT-1). Biochem Biophys Res Comm 141:1185–1188.

    PubMed  CAS  Google Scholar 

  112. Shaper NL, Shaper JH, Bertness V, Chang H, Kirsch IR, Hollis GF. 1986. The human galactosyltransferase gene is on chromosome 9 at band p13. Somatic Cell Mol Genet 12:633–636.

    CAS  Google Scholar 

  113. Yarr M, Palleroni AV, Gilchrest BA. 1986. Normal human epidermis contains an interferon-like protein. J Cell Biol 103:1349–1354.

    Google Scholar 

  114. Kirkwood JM, Ernstoff MS, Davis CA, Reiss M, Ferraresi R, Rudnick SA. 1985. Comparision of intramuscular and intravenous recombinant alpha-2 interferon in melanoma and other cancers. Ann Intern Med 103:32–36.

    PubMed  CAS  Google Scholar 

  115. Creagan ET, Ahmann DL, Frytak S, Long HL, Itri LM. 1986. Recombinant leukocyte A interferon (rIFN-alphaA) in the treatment of disseminated malignant melanoma. Cancer 58:2576–2578.

    PubMed  CAS  Google Scholar 

  116. Jackson IJ. 1988. A cDNA encoding tyrosinase-related protein maps to the brown locus in mice. Proc Natl Acad Sci USA 85:4392–4396.

    PubMed  CAS  Google Scholar 

  117. Houghton AN, Real FX, Davis LJ, Cordon Cardo C, Old LJ. 1987. Phenotypic heterogeneity of elanoma. Relation to the differentiation program of melanoma cells. J Exp Med 165:812–829.

    PubMed  CAS  Google Scholar 

  118. Roseman S. 1970. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5:270–297.

    PubMed  CAS  Google Scholar 

  119. LaMont JT, Gammon MT, Isselbacher KJ. 1977. Cell-surface glycosyltransferases in cultured fibroblasts: Increased activity and release during serum stimulation of growth. Proc Natl Acad Sci USA 74:1086–1090.

    PubMed  CAS  Google Scholar 

  120. Evans EP, Burtenshaw MD, Brown BB, Hennion R, Harris H. 1982. The analysis of malignancy by cell fusion. J Cell Sci 56:113–130.

    PubMed  CAS  Google Scholar 

  121. Islam MQ, Szpirer J, Szpirer C, Islam K, Dasnoy J-F, Levan G. 1989. A gene for the suppression of anchorage independence is located in rat chromosome 5 bands q22-23 and the rat alpha-interferon locus maps at the same region. J Cell Sci 82:147–162.

    Google Scholar 

  122. Bigner SH, Mark J, Bullard DE, Manaley MS Jr, Bigner DD. 1986. Chromosomal evolution in malignant human gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 22:121–135.

    PubMed  CAS  Google Scholar 

  123. Diaz MO, Ziemin S, Le Beau MM, et al. 1988. Homozygous deletion of the alpha-and beta 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci USA 85:5259–5263.

    PubMed  CAS  Google Scholar 

  124. Diaz MO, Rubin CM, Harden A, et al. 1990. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med 322:77–82.

    PubMed  CAS  Google Scholar 

  125. Lukeis R, Irving L, Gason M, Hasthorpe S. 1990. Cytogenetis of non-small cell lung cancer: Analysis of consistent non-random abnormalities. Genes Chromosom Cancer 2:116–124.

    PubMed  CAS  Google Scholar 

  126. Shen V, Walter B, Haddad M, et al. 1989. Deletions or loss of chromosome 9 and 10 in astrocytomas. Cytogenet Cell Genet 51:202–225.

    Google Scholar 

  127. Miyakoshi J, Dobler KD, Allalunis-Turner J, et al. 1990. Absence of IFNA and IFNB genes from human malignant glioma cell lines and lack of correlation with cellular sensitivity to interferons. Cancer Res 50:278–283.

    PubMed  CAS  Google Scholar 

  128. James CD, He J, Carlbom E, Nordenskjold M, Cavenee WK, Collins VP. 1991. Chromosome 9 deletion mapping reveals interferon a and interferon β1 gene deletions in human glial tumors. Cancer Res 51:1684–1688.

    PubMed  CAS  Google Scholar 

  129. Bos JL. 1989. Ras oncogenes in human cancer: A review. Cancer Res 49:4682–4689.

    PubMed  CAS  Google Scholar 

  130. de Fromentel CC, Soussi T. 1992. TP53 tumor suppressor gene: A model for investigating human mutagenesis. Genes Chromosom Cancer 4:1–15.

    Google Scholar 

  131. Barbacid M. 1987. Ras genes. Annu Rev Biochem 56:779–827.

    PubMed  CAS  Google Scholar 

  132. Nigro JM, Baker SJ, Preisinger AC, et al. 1989. Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708.

    PubMed  CAS  Google Scholar 

  133. Hinds PW, Finlay CA, Quartin RS, et al. 1990. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: A comparison of the ‘hot-spot’ mutant phenotypes. Cell Growth Differ 1:571–580.

    PubMed  CAS  Google Scholar 

  134. Albino AP, Nanus DM, Mentle IR, et al. 1989. Analysis of ras oncogenes in malignant melanoma and precursor lesions: Correlation of point mutations with differentiation phenotype. Oncogene 4:1363–1374.

    PubMed  CAS  Google Scholar 

  135. Dicker AP, Volkenandt M, Albino AP. 1990. Mutational analysis of human N-ras genes in malignant melanoma: Rapid methods for oligonucleotide hybridization. Manual and automated direct sequencing of products generated by the polymerase chain reaction. Genes Chromosom Cancer 1:257–269.

    PubMed  CAS  Google Scholar 

  136. Volkenandt M, McNutt NS, Albino AP. 1991. Sequence analysis of DNA from formalinfixed, paraffin-embedded human malignant melanoma. J Cutan Pathol 18:210–214.

    PubMed  CAS  Google Scholar 

  137. Albino AP, Nanus DM, Davis ML, McNutt NS. 1991. Lack of evidence of Ki-ras codon 12 mutations in melanocytic lesions. J Cutan Pathol 18:273–278.

    PubMed  CAS  Google Scholar 

  138. Albino AP. 1988. Paradox of ras oncogenes in malignant melanoma. Pigment Cell Res 1 (Suppl):169–179.

    Google Scholar 

  139. van’t Veer LJ, Burgering BMT, Versteeg R, et al. 1989. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol Cell Biol 9:3114–3116.

    Google Scholar 

  140. Shukla VK, Hughes DC, Hughes LE, McCormick F, Padua RA. 1989. Ras mutations in human melanotic lesions: K-ras activation is a frequent and early event in melanoma development. Oncol Res 5:121–127.

    CAS  Google Scholar 

  141. Sekiya T, Fushimi M, Hori H, Hirohashi S, Nishimura S, Sugimura T. 1984. Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. Proc Natl Acad Sci USA 81:4771–4775.

    PubMed  CAS  Google Scholar 

  142. Padua RA, Barrass NC, Currie GA. 1985. Activation of N-ras in a human melanoma cell line. Mol Cell Biol 5:582–585.

    PubMed  CAS  Google Scholar 

  143. Hayward NK, Keegan R, Nancarrow DJ, et al. 1988. c-Ha-ras-1 alleles in bladder cancer, Wilms’ tumour and malignant melanoma. Hum Genet 78:115–120.

    PubMed  CAS  Google Scholar 

  144. Raybaud F, Noguchi T, Marics I, et al. 1988. Detection of a low frequency of activated ras genes in human melanomas using a tumorigenicity assay. Cancer Res 48:950–953.

    PubMed  CAS  Google Scholar 

  145. Elder DE, Goldman LI, Goldman SC, Greene MH, Clark WH Jr. 1980. Dysplastic nevus syndrome: A phenotypic association of sporadic cutaneous melanoma. Cancer 46:1787–1794.

    PubMed  CAS  Google Scholar 

  146. Roush GC, Barnhill RL. 1991. Correlation of clinical pigmentary characteristics with histopathologically-confined dysplastic nevi in nonfamilial melanoma patients. Studies of melanocytic nevi IX. Br J Cancer 64:943–947.

    PubMed  CAS  Google Scholar 

  147. Furth ME, Davis LJ, Fleurdelys B, Scolnick EM. 1982. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol 43:294–304.

    PubMed  CAS  Google Scholar 

  148. Houghton AN, Eisinger M, Albino AP, Cairncross JG, Old LJ. 1982. Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets. J Exp Med 156:1755–1766.

    PubMed  CAS  Google Scholar 

  149. Yoakum GH, Lechner JF, Gabrielson EW, et al. 1985. Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene. Science 227:1174–1179.

    PubMed  CAS  Google Scholar 

  150. Muschel RJ, Nakahara K, Chu E, Pozzatti R, Liotta LA. 1986. Karyotypic analysis of diploid or near diploid metastatic Harvey ras transformed rat embryo fibroblasts. Cancer Res 46:4104–4108.

    PubMed  CAS  Google Scholar 

  151. Ichikawa T, Kyprianou N, Isaacs JT. 1990. Genetic instability and the acquisition of metastatic ability by rat mammary cancer cell following v-H-ras oncogene transfection. Cancer Res 50:6349–6357.

    PubMed  CAS  Google Scholar 

  152. Pfeffer LM, Kopelovich L. 1977. Differential genetic susceptibility of cultured human skin fibroblasts to transformation by Kirsten murine sarcoma virus. Cell 10:313–320.

    PubMed  CAS  Google Scholar 

  153. Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A. 1983. Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80:7601–7605.

    PubMed  CAS  Google Scholar 

  154. Doniger J, Di Paolo JA, Popescu NC. 1983. Transformation of Bloom’s syndrome fibroblasts by DNA transfection. Science 222:1144–1146.

    PubMed  CAS  Google Scholar 

  155. Pratt CI, Kao C, Wu S, Gilchrist KW, Oyasu R, Reznikoff CA. 1992. Neoplastic progression by EJ/ras at different steps of transformation in vitro of human uroepithelial cells. Cancer Res 52:688–695.

    PubMed  CAS  Google Scholar 

  156. Albino AP, Houghton AN, Eisinger M, et al. 1986. Class II histocompatibility antigen expression in human melanocytes transformed by Harvey murine sarcoma virus (Ha-MSV) and Kirsten MSV retroviruses. J Exp Med 164:1710–1722.

    PubMed  CAS  Google Scholar 

  157. Houghton AN, Albino AP, Cordon Cardo C, Davis LJ, Eisinger M. 1988. Cell surface antigens of human melanocytes and melanoma. Expression of adenosine deaminase binding protein is extinguished with melanocyte transformation. J Exp Med 167:197–212.

    PubMed  CAS  Google Scholar 

  158. Chattopadhyay SK, Oliff AI, Linemeyer DL, Lander MR, Lowy DR. 1981. Genomes of murine leukemia viruses isolated from wild mice. J Virol 39:777–791.

    PubMed  CAS  Google Scholar 

  159. Eisinger M, Marko O. 1982. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 79:2018–2022.

    PubMed  CAS  Google Scholar 

  160. Eisinger M, Marko O, Ogata S, Old LJ. 1985. Growth regulation of human melanocytes: Mitogenic factors in extracts of melanoma, astrocytoma, and fibroblast cell lines. Science 229:984–986.

    PubMed  CAS  Google Scholar 

  161. Halaban R, Kwon BS, Ghosh S, Delli Bovi P, Baird A. 1988. bFGF as an automne growth factor for human melanomas. Oncogene Res 3:177–186.

    PubMed  CAS  Google Scholar 

  162. Rappolee DA, Wang A, Mark D, Werb Z. 1989. Novel method for studying mRNA phenotypes in single or small numbers of cells. J Cell Biochem 39:1–11.

    PubMed  CAS  Google Scholar 

  163. Albino AP, Davis BM, Nanus DM. 1991. Induction of growth factor RNA expression in human malignant melanoma: Markers of transformation. Cancer Res 51:4815–4820.

    PubMed  CAS  Google Scholar 

  164. Holzmann B, Johnson JP, Kaudewitz P, Riethmuller G. 1985. In situ analysis of antigens on malignant and benign cells of the melanocyte lineage. Differential expression of two surface molecules, gp75 and p89. J Exp Med 161:366–377.

    PubMed  CAS  Google Scholar 

  165. Herlyn M, Koprowski H. 1988. Melanoma antigens: Immunological and biological characterization and clinical significance. Annu Rev Immunol 6:283–308.

    PubMed  CAS  Google Scholar 

  166. Houghton AN, Thomson TM, Gross D, Oettgen HF, Old LJ. 1984. Surface antigens of melanoma and melanocytes. Specificity of induction of la antigens by human gammainterferon. J Exp Med 160:255–269.

    PubMed  CAS  Google Scholar 

  167. Real FX, Houghton AN, Albino AP, et al. 1985. Surface antigens of melanomas and melanocytes defined by mouse monoclonal antibodies: Specificity analysis and comparison of antigen expression in cultured cells and tissues. Cancer Res 45:4401–4411.

    PubMed  CAS  Google Scholar 

  168. Pukel CS, Lloyd KO, Travassos LR, Dippold WG, Oettgen HF, Old LJ. 1982. GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med 155:1133–1147.

    PubMed  CAS  Google Scholar 

  169. Thomson TM, Real FX, Murakami S, Cordon Cardo C, Old LJ, Houghton AN. 1988. Differentiation antigens of melanocytes and melanoma: Analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol 90:459–466.

    PubMed  CAS  Google Scholar 

  170. Vijayasaradhi S, Bouchard B, Houghton AN. 1990. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med 171:1375–1380.

    PubMed  CAS  Google Scholar 

  171. Hume CR, Accolla RS, Lee JS. 1987. Defective HLA class II expression in a regulatory mutant is partially complemented by activated ras oncogenes. Proc Natl Acad Sci USA 84:8603–8607.

    PubMed  CAS  Google Scholar 

  172. Matyas GR, Aaronson SA, Brady RO, Fishman PH. 1987. Alteration of glycolipids in ras-transfected NIH 3T3 cells. Proc Natl Acad Sci USA 84:6065–6068.

    PubMed  CAS  Google Scholar 

  173. Saska M. 1982. Current status of cytogenetic studies in animal tumors with special reference to nonrandom chromosomal changes. Cancer Genet Cytogenet 5:153–172.

    Google Scholar 

  174. Jambrosic J, Mancianti ML, Ricciardi R, Sela BA, Koprowski H, Herlyn M. 1989. Transformation of normal human melanocytes and non-malignant nevus cells by adenovirus 12-SV40 hybrid virus. Int J Cancer 44:1117–1123.

    PubMed  CAS  Google Scholar 

  175. Wilson RE, Dooley TP, Hart IR. 1989. Induction of tumorigenicity and lack of in vitro growth requirement for 12-0-tetradecanoylphorbol-13-acetate by transfection of murine melanocytes with v-Ha-ras. Cancer Res 49:711–716.

    PubMed  CAS  Google Scholar 

  176. Dooley TP, Wilson RE, Jones NC, Hart IR. 1988. Polyoma middle T abrogates TPA requirement of murine melanocytes and induces malignant melanoma. Oncogene 3:531–535.

    PubMed  CAS  Google Scholar 

  177. Kornbluth S, Sudol M, Hanafusa H. 1987. Association of the polyomavirus middle-T antigen with c-yes protein. Nature 325:171–173.

    PubMed  CAS  Google Scholar 

  178. Bradl M, Klein-Szanto A, Porter S, Mintz B. 1991. Malignant melanoma in transgenic mice. Proc Natl Acad Sci USA 88:164–168.

    PubMed  CAS  Google Scholar 

  179. Orita M, Suzuki Y, Sekiya T, Hayashi K. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879.

    PubMed  CAS  Google Scholar 

  180. Horikoshi T, Danenberg KD, Stadibauer TO, et al. 1992. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res 52:108–116.

    PubMed  CAS  Google Scholar 

  181. Brash DE, Rudolph JA, Simon JA, et al. 1991. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128.

    PubMed  CAS  Google Scholar 

  182. Volkenandt M, Schlegel U, Nanus DM, Albino AP. 1991. Mutational analysis of the human p53 gene in malignant melanoma. Pigment Cell Res 4:35–40.

    PubMed  CAS  Google Scholar 

  183. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. 1990. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679.

    PubMed  CAS  Google Scholar 

  184. Bartek J, Iggo R, Gannon J, Lane DP. 1990. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5:893–899.

    PubMed  CAS  Google Scholar 

  185. Banks L, Matlashewski G, Crawford L. 1986. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur J Biochem 159:529–534.

    PubMed  CAS  Google Scholar 

  186. Stretch JR, Gatter KC, Ralfkiaer E, Lane DP, Harris AL. 1991. Expression of mutant p53 in melanoma. Cancer Res 51:5976–5979.

    PubMed  CAS  Google Scholar 

  187. Goustin AS, Leof EB, Shipley GD, Moses HL. 1986. Growth factors and cancer. Cancer Res 46:1015–1029.

    PubMed  CAS  Google Scholar 

  188. Rodeck U, Melber K, Kath R, et al. 1991. Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J Invest Dermatol 97:20–26.

    PubMed  CAS  Google Scholar 

  189. Halaban R, Moellmann G. 1991. Proliferation and malignant transformation of melanocytes. Crit Rev Oncog 2:247–258.

    PubMed  CAS  Google Scholar 

  190. Burgess AW. 1989. Epidermal growth factor and transforming growth factor alpha. Br Med Bull 45:401–424.

    PubMed  CAS  Google Scholar 

  191. Sporn MB, Todaro GJ. 1980. Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880.

    PubMed  CAS  Google Scholar 

  192. Derynck R, Goeddel DV, Ullrich A, et al. 1987. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res 47:707–712.

    PubMed  CAS  Google Scholar 

  193. Imanishi K, Yamaguchi K, Suzuki M, Honda S, Yanaihara N, Abe K. 1989. Production of transforming growth factor-alpha in human tumour cell lines. Br J Cancer 59:761–765.

    PubMed  CAS  Google Scholar 

  194. Coffey RJ Jr, Derynck R, Wilcox JN, et al. 1987. Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 328:817–820.

    PubMed  CAS  Google Scholar 

  195. Madtes DK, Raines EW, Sakariassen KS, Assonian RK, Sporn MB. 1988. Induction of transforming growth factor alpha in activated human alveolar macrophages. Cell 53:285–293.

    PubMed  CAS  Google Scholar 

  196. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R. 1986. Expression in rat fibroblasts of a human transforming growth factor-alpha cDNA results in transformation. Cell 46:301–309.

    PubMed  CAS  Google Scholar 

  197. Marquardt H, Hunkapiller MW, Hood LE, et al. 1983. Transforming growth factors produced by retrovirus-transformed rodent fibroblasts and human melanoma cells: Amino acid sequence homology with epidermal growth factor. Proc Natl Acad Sci USA 80:4684–4688.

    PubMed  CAS  Google Scholar 

  198. Ellem KA, Cullinan M, Baumann KC, Dunstan A. 1988. UVR induction of TGF alpha: A possible automne mechanism for the epidermal melanocytic response and for promotion of epidermal carcinogenesis. Carcinogenesis 9:797–801.

    PubMed  CAS  Google Scholar 

  199. Hayward N, Nancarrow D, Ellem K, Parsons P, Kidson C. 1988. A Taql RFLP of the human TGF alpha gene is significantly associated with cutaneous malignant melanoma. Int J Cancer 42:558–561.

    PubMed  CAS  Google Scholar 

  200. Derynck R, Jarrett JA, Chen EY, et al. 1985. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705.

    PubMed  CAS  Google Scholar 

  201. Madisen L, Webb NR, Rose TM, et al. 1988. Transforming growth factor-beta 2: cDNA cloning and sequence analysis. DNA 7:1–8.

    PubMed  CAS  Google Scholar 

  202. Derynck R, Lindquist PB, Lee A, et al. 1988. A new type of transforming growth factor-beta, TGF-beta 3. EMBO J 7:3737–3743.

    PubMed  CAS  Google Scholar 

  203. Cheifetz S, Weatherbee JA, Tsang ML, et al. 1987. The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell 48:409–415.

    PubMed  CAS  Google Scholar 

  204. Moses HL, Yang EY, Pietenpol JA. 1990. TGF-β stimulation and inhibition of cell proliferation: New mechanistic insights. Cell 63:245–247.

    PubMed  CAS  Google Scholar 

  205. Massague J. 1987. The TGF-beta family of growth and differentiation factors. Cell 49:437–438.

    PubMed  CAS  Google Scholar 

  206. Siepl C, Bodmer S, Frei K, et al. 1988. The glioblatoma derived T cell suppressor factor/transforming growth factor-B2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 18:593–602.

    PubMed  CAS  Google Scholar 

  207. Bodmer S, Strommer K, Frei K, et al. 1989. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229.

    PubMed  CAS  Google Scholar 

  208. Ellingsworth LR, Nakayama D, Segarini P, Dasch J, Carrillo P, Waegell W. 1988. Transforming growth factor-betas are equipotent growth inhibitors of interleukin-1-induced thymocyte proliferation. Cell Immunol 114:41–54.

    PubMed  CAS  Google Scholar 

  209. Ignotz RA, Massague J. 1987. Cell adhesion protein receptors as targets for transforming growth factor-beta action. Cell 51:189–197.

    PubMed  CAS  Google Scholar 

  210. Jennings JC, Mohan S, Linkhart TA, Widstrom R, Baylink DJ. 1988. Comparison of the biological actions of TGF beta-1 and TGF beta-2: Differential activity in endotheliai cells. J Cell Physiol 137:167–172.

    PubMed  CAS  Google Scholar 

  211. Arrick BA, Korc M, Derynck R. 1990. Differential regulation of expression of three transforming growth factor beta species in human breast cancer cell lines by estradiol. Cancer Res 50:299–303.

    PubMed  CAS  Google Scholar 

  212. Czarniecki CW, Chiu HH, Wong GH, McCabe SM, Palladino MA. 1988. Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J Immunol 140:4217–4223.

    PubMed  CAS  Google Scholar 

  213. Burgess WH, Maciag T. 1989. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606.

    PubMed  CAS  Google Scholar 

  214. Goldfarb M. 1990. The fibroblast growth factor family. Cell Growth Different 1:439–445.

    CAS  Google Scholar 

  215. Rogelj S, Weinberg RA, Fanning P, Klagsbrun M. 1988. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175.

    PubMed  CAS  Google Scholar 

  216. Halaban R, Ghosh S, Baird A. 1987. bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev Biol 23:47–52.

    PubMed  CAS  Google Scholar 

  217. Becker D, Meier CB, Herlyn M. 1989. Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8:3685–3691.

    PubMed  CAS  Google Scholar 

  218. Dotto GP, Moellmann G, Ghosh S, Edwards M, Halaban R. 1989. Transformation of murine melanocytes by basic fibroblast growth factor cDNA and oncogenes and selective suppression of the transformed phenotype in a reconstituted cutaneous environment. J Cell Biol 109:3115–3128.

    PubMed  CAS  Google Scholar 

  219. Zhan X, Bates B, Hu XG, Goldfarb M. 1988. The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol Cell Biol 8:3487–3495.

    PubMed  CAS  Google Scholar 

  220. Jaye M, Lyall RM, Mudd R, Schlessinger J, Sarver N. 1988. The expression of acidic fibroblast growth factor cDNA confers growth advantage and tumorigenesis to Swiss 3T3 cells. EMBO J 7:963–969.

    PubMed  CAS  Google Scholar 

  221. Albino AP, Lloyd KO, Houghton AN, Oettgen HF, Old LJ. 1981. Heterogeneity in surface antigen and glycoprotein expression of cell lines derived from different melanoma metastases of the same patient. Implications for the study of tumor antigens. J Exp Med 154:1764–1778.

    PubMed  CAS  Google Scholar 

  222. Slamon DJ, deKernion JB, Verma IM, Cline MJ. 1984. Expression of cellular oncogenes in human malignancies. Science 224:256–262.

    PubMed  CAS  Google Scholar 

  223. Sobel ME. 1990. Metastasis suppressor genes. J Natl Cancer Inst 82:267–276.

    PubMed  CAS  Google Scholar 

  224. Yamanishi DT, Buckmeier JA, Meyskens FL Jr. 1991. Expression of c-jun, jun-B, and c-fos protooncogenes in human primary melanocytes and metastatic melanomas. J Invest Dermatol 97:349–353.

    PubMed  CAS  Google Scholar 

  225. Bishop JM. 1991. Molecular themes in oncogenesis. Cell 64:235–248.

    PubMed  CAS  Google Scholar 

  226. Cross M, Dexter TM. 1991. Growth factors in development, transformation, and tumorigenesis. Cell 64:271–280.

    PubMed  CAS  Google Scholar 

  227. Lassam N, Bickford S. 1992. Loss of c-kit expression in cultured melanoma cells. Oncogene 7:51–56.

    PubMed  CAS  Google Scholar 

  228. Halaban R. 1991. Growth factors and tyrosine protein kinases in normal and malignant melanocytes. Cancer Metastasis Rev 10:129–140.

    PubMed  CAS  Google Scholar 

  229. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. 1988. The protooncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–89.

    PubMed  CAS  Google Scholar 

  230. Geissler EN, Ryan MA, Housman DE. 1988. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55:185–192.

    PubMed  CAS  Google Scholar 

  231. Takahashi M, Cooper GM. 1987. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7:1378–1386.

    PubMed  CAS  Google Scholar 

  232. Iwamoto T, Takahashi M, Ito M, et al. 1991. Aberrant melanogenesis and melanocytic tumour development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO J 10:3167–3175.

    PubMed  CAS  Google Scholar 

  233. Takahashi M, Buma Y, Taniguchi M. 1990. Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 5:126–133.

    Google Scholar 

  234. Cooper CS, Blair DG, Oskarsson MK, Tainsky MA, Eader LA, Vande Woude GF. 1984. Characterization of human transforming genes from chemically transformed, teratocarcinoma, and pancreatic carcinoma cell lines. Cancer Res 44:1–10.

    PubMed  CAS  Google Scholar 

  235. Park M, Dean M, Cooper CS, et al. 1986. Mechanism of met oncogene activation. Cell 45:895–904.

    PubMed  CAS  Google Scholar 

  236. Sudol M, Hanafusa H. 1986. Cellular proteins homologous to the viral yes gene product. Mol Cell Biol 6:2839–2846.

    PubMed  CAS  Google Scholar 

  237. Zhao YH, Krueger JG, Sudol M. 1990. Expression of cellular-yes protein in mammalian tissues. Oncogene 5:1629–1635.

    PubMed  CAS  Google Scholar 

  238. Krueger J, Zhao YH, Murphy D, Sudol M. 1991. Differential expression of p62c-yes in normal, hyperplastic and neoplastic human epidermis. Oncogene 6:933–940.

    PubMed  CAS  Google Scholar 

  239. Kopf AW, Kripke ML, Stern RS. 1984. Sunlight and malignant melanoma. J Am Acad Dermatol 11:674–684.

    PubMed  CAS  Google Scholar 

  240. Tippo L, Pukkanen M, Hakulinen T. 1978. Sunlight as a risk factor of malignant melanoma of the skin. Cancer 41:2018–2027.

    Google Scholar 

  241. Tucker MA. 1988. Individuals at high risk of melanoma. In JM Elwood (ed), Pigment Cell. Basel: S. Karger, pp 95–109.

    Google Scholar 

  242. Ananthaswamy HN, Pierceall WE. 1990. Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52:1119–1136.

    PubMed  CAS  Google Scholar 

  243. Lindahl T. 1982. DNA repair enzymes. Ann Rev Biochem 51:61–87.

    PubMed  CAS  Google Scholar 

  244. Kraemer KH, Herlyn M, Yuspa SH, et al. 1989. Reduced DNA repair in cultured melanocytes and nevus cells from a patient with xeroderma pigmentosum. Arch Dermatol 125:263–268.

    PubMed  CAS  Google Scholar 

  245. Kantor GJ, Elking CF. 1988. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells. Cancer Res 48:844–849.

    PubMed  CAS  Google Scholar 

  246. Setlow RB, Regan JD, German J, Carrier WL. 1969. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci USA 64:1035–1041.

    PubMed  CAS  Google Scholar 

  247. Kraemer KH, Lee MM, Scotto J. 1984. DNA repair protects against cutaneous and internal neoplasia: Evidence from xeroderma pigmentosum. Carcinogenesis 5:511–514.

    PubMed  CAS  Google Scholar 

  248. Lynch HT, Fusaro RM, Johnson JA. 1984. Xeroderma pigmentosum. Arch Dermatol 120:175–179.

    PubMed  CAS  Google Scholar 

  249. Smith PJ, Greene MH, Devlin DA, McKeen EA, Paterson MC. 1982. Abnormal sensitivity to UV-radiation in cultured skin fibroblasts from patients with hereditary cutaneous malignant melanoma and dysplastic nevus syndrome. Int J Cancer 30:39–45.

    PubMed  CAS  Google Scholar 

  250. Bagnara JT. 1988. Advances in Pigment Cell Research. New York: Alan R. Liss.

    Google Scholar 

  251. Cerutti PA. 1988. Oxidant tumor promoters. In Growth Factors, Tumor Promoters and Cancer Genes. New York: Alan R. Liss, pp 239–247.

    Google Scholar 

  252. Harsanyi ZP, Post PW, Brinkman JP, et al. 1980. Mutagenicity of melanin from human red hair. Experientia 36:291–292.

    PubMed  CAS  Google Scholar 

  253. Yuspa SH. 1986. Cutaneous chemical carcinogenesis. J Am Acad Dermatol 15:1031–1044.

    PubMed  CAS  Google Scholar 

  254. Quevedo WC, Szabo G, Virks J, Sinesi J. 1965. Melanocyte populations in UV-irradiated human skin. J Invest Dermatol 45:295–298.

    PubMed  Google Scholar 

  255. Rosen CF, Sek Y, Farinell W, et al. 1987. A comparison of the melanocyte response to narrow band UVA and UVB exposure in vivo. J Invest Dermatol 88:774–779.

    PubMed  CAS  Google Scholar 

  256. Libow LF, Scheide S, DeLeo VA. 1988. Ultraviolet radiation acts as an independent mitogen for normal human melanocytes in culture. Pigment Cell Res 1:397–401.

    PubMed  CAS  Google Scholar 

  257. Eisinger M, Marko O, Weinstein IB. 1983. Stimulation of growth of human melanocytes by tumor promoters. Carcinogenesis 4:779–781.

    PubMed  CAS  Google Scholar 

  258. Deleo V, Hanson D, Horlick H, Harbor LC. 1984. Ultraviolet radiation induces changes in membrane metabolism of human keratinocytes in culture. J Invest Dermatol 83:323–326.

    CAS  Google Scholar 

  259. Deleo V, Hanson D, Weinstein IB, Harbor LC. 1985. UVB stimulates release of arachidonic acid from mammalian cells in culture. Photobiology 41:51–56.

    CAS  Google Scholar 

  260. Hanson D, Deleo V. 1990. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes. J Invest Dermatol 95:158–163.

    PubMed  CAS  Google Scholar 

  261. Matsui MS, Laufer L, Scheide S, Deleo V. 1989. Ultraviolet-B (290-320nm)-irradiation inhibits epidermal growth-factor binding to mammalian cells. J Invest Dermatol 92:617–622.

    PubMed  CAS  Google Scholar 

  262. Elder DE. 1989. Human melanocytic neoplasms and their etiologic relationship with sunlight. J Invest Dermatol 92 (Suppl):297S–303S.

    PubMed  CAS  Google Scholar 

  263. English DR, Heenan PJ, Holman CD, et al. 1986. Melanoma in Western Australia 1975-76 to 1980-81: Trends in demographic and pathological characteristics. Int J Cancer 37:209–215.

    PubMed  CAS  Google Scholar 

  264. Aubin R, Donawho CK, Kripke ML. 1991. Effect of psoralen plus ultraviolet A radiation on in vivo growth of melanoma cells. Cancer Res 51:5893–5897.

    PubMed  CAS  Google Scholar 

  265. Romerdahl CA, Stephens LC, Bucana C, Kripke ML. 1989. The role of ultraviolet radiation in the induction of melanocytic skin tumors in inbred mice. Cancer Commun 1:209–216.

    PubMed  CAS  Google Scholar 

  266. Donawho CK, Kripke ML. 1991. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 51:4176–4181.

    PubMed  CAS  Google Scholar 

  267. Ullrich SE, Alcalay J, Applegate LA, Kripke ML. 1989. Immunosuppression in phototherapy. Ciba Found Symp 146:131–139.

    PubMed  CAS  Google Scholar 

  268. Gordon PR, Mansur CP, Gilchrest BA. 1989. Regulation of human melanocyte growth, dendricity, and melanization by keratinocyte derived factors. J Invest Dermatol 92:565–572.

    PubMed  CAS  Google Scholar 

  269. Kim TY, Kripke ML, Ullrich SE. 1990. Immunosuppression by factors released from UV-irradiated epidermal cells: Selective effects on the generation of contact and delayed hypersensitivity after exposure to UVA or UVB radiation. J Invest Dermatol 94:26–32.

    PubMed  CAS  Google Scholar 

  270. Fisher MS, Kripke ML. 1982. Suppressor T-lymphocytes control the development of primary skin cancers in ultraviolet-irradiated mice. Science 216:1133–1135.

    PubMed  CAS  Google Scholar 

  271. Noonan FP, de Fabo EC, Kripke ML. 1981. Suppression of contact hypersensitivity by UV radiation and its relationship to UV-induced suppression of tumor immunity. Photochem Photobiol 34:683–689.

    PubMed  CAS  Google Scholar 

  272. Bos JL. 1988. The ras gene family and human carcinogenesis. Mutat Res 195:255–271.

    PubMed  CAS  Google Scholar 

  273. Husain Z, Yang Q, Biswas DK. 1990. c-Ha-ras proto-oncogene. Arch Dermatol 126:324–330.

    PubMed  CAS  Google Scholar 

  274. Suarez HG, Daya Grosjean L, Schlaifer D, et al. 1989. Activated oncogenes in human skin tumors from a repair-deficient syndrome, xeroderma pigmentosum. Cancer Res 49:1223–1228.

    PubMed  CAS  Google Scholar 

  275. Ananthaswamy HN, Price JE, Goldberg LH, Bales ES. 1988. Detection and identification of activated oncogenes in human skin cancers occurring on sun-exposed body sites. Cancer Res 48:3341–3346.

    PubMed  CAS  Google Scholar 

  276. Roop DR, Lowy DR, Tambourin PE, et al. 1986. An activated Harvey ras oncogene produces benign tumours on mouse epidermal tissue. Nature 323:822–824.

    PubMed  CAS  Google Scholar 

  277. Leon J, Kamino H, Steinberg JJ, Pellicer A. 1988. H-ras activation in benign and self-regressing skin tumors (keratoacanthomas) in both humans and an animal model system. Mol Cell Biol 8:786–793.

    PubMed  CAS  Google Scholar 

  278. Aldaz CM, Conti CJ, Yuspa SH, Slaga TJ. 1988. Cytogenetic profile of mouse skin tumors induced by the viral Harvey-ras gene. Carcinogenesis 9:1503–1505.

    PubMed  CAS  Google Scholar 

  279. Kaba DS, Pierceall WE, Price JE, Ananthaswamy HN. 1990. Immune response to progressor variants derived from transfection of an ultraviolet radiation-induced C3H mouse regressor tumor cell line with activated Harvey-ras oncogene. Cancer Res 50:3159–3166.

    PubMed  CAS  Google Scholar 

  280. Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A. 1983. Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80:7601–7605.

    PubMed  CAS  Google Scholar 

  281. Sager R. 1986. Genetic suppression of tumor formation: A new frontier in cancer research. Cancer Res 46:1573–1580.

    PubMed  CAS  Google Scholar 

  282. Dotto GP, Weinberg RA, Ariza A. 1988. Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proc Natl Acad Sci USA 85:6389–6393.

    PubMed  CAS  Google Scholar 

  283. Spandidos DA. 1986. The human T24 Ha-rasl oncogene: A study of the effects of overexpression of the mutated ras gene product in rodent cells. Anticancer Res 6:259–262.

    PubMed  CAS  Google Scholar 

  284. Liotta LA, Guirguis R, Stracke M. 1987. Biology of melanoma invasion and metastasis. Pigment Cell Res 1:5–15.

    PubMed  CAS  Google Scholar 

  285. Maltzman W, Czyzyk L. 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694.

    PubMed  CAS  Google Scholar 

  286. Shea CR, McNutt NS, Volkenandt M, Lugo J, Prioleau PG, Albino AP. 1992. Over-expression of p53 protein in basal cell carcinomas of human skin. Am J Pathol, in press.

    Google Scholar 

  287. Sober AJ. 1983. Diagnosis and management of skin cancer. Cancer 51:2448–2452.

    PubMed  CAS  Google Scholar 

  288. Maher VM, Rowan LA, Silinskas KC, Kateley SA, McCormick JJ. 1982. Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Natl Acad Sci USA 79:2613–2617.

    PubMed  CAS  Google Scholar 

  289. Temin HM. 1988. Evolution of cancer genes as a mutation-driven process. Cancer Res 48:1697–1701.

    PubMed  CAS  Google Scholar 

  290. Cavenee WK, Hansen MF. 1986. Molecular genetics of human familiar cancer. Cold Spring Harbor Symp Quant Biol 51:829–835.

    PubMed  CAS  Google Scholar 

  291. Hansen WF, Cavenee WK. 1987. Genetics of cancer predisposition. Cancer Res 47:5518–5527.

    PubMed  CAS  Google Scholar 

  292. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P. 1986. Consequences of widespread deregulation of the c-myc gene in transgeneic mice: Multiple neoplasms and normal development. Cell 45:485–495.

    PubMed  CAS  Google Scholar 

  293. Rassoulzadegan M, Cuzin F. 1987. Sub-threshold neoplastic states created in transgenic mice. Oncogene Res 1:1–6.

    PubMed  CAS  Google Scholar 

  294. Bohr VA, Phillips DH, Hanawalt PC. 1987. Heterogeneous DNA damage and repair in the mammalian genome Cancer Res 47:6426–6436.

    CAS  Google Scholar 

  295. Pienta KJ, Partin AW, Coffey DS. 1989. Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res 49:2525–2532.

    PubMed  CAS  Google Scholar 

  296. Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE. 1991. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338:1227–1229.

    PubMed  CAS  Google Scholar 

  297. Priest JH, Phillips CN, Wang Y, Richmond A. 1988. Chromosome and growth factor abnormalities in melanoma. Cancer Genet Cytogenet 35:253–262.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albino, A.P., Fountain, J.W. (1993). Molecular genetics of human malignant melanoma. In: Nathanson, L. (eds) Current Research and Clinical Management of Melanoma. Cancer Treatment and Research, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3080-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3080-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6345-3

  • Online ISBN: 978-1-4615-3080-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics