Skip to main content

Semiconductor Quantum Dots in Amorphous Materials

  • Chapter
Optical Properties of Excited States in Solids

Part of the book series: NATO ASI Series ((NSSB,volume 301))

Abstract

Quantum dots based on semiconductors have acquired increasing interest recently. Band filling and screening of excitons by free carriers are the most important mechanisms for the large resonant nonlinearity of semiconductors. The information in the literature is mostly concerned with semiconductor crystals or conventional filter glasses doped by semiconductor particles. Due to the spatial confinement of the photogenerated charged carriers, the electronic levels of small size particles rise to higher energies than in bigger particles, In such a case, one can treat the problem in a one-dimensional box; whereas, the energetic band continuum splits into discrete quantized levels which can be detected in the absorption and excitation spectra.

We shall discuss recent techniques of incorporation of semiconductor particles of varying size into glass bulks or films prepared by the sol-gel method, composite materials and polymers. Contrary to the conventional glass filters, the time response of nonlinearity in semiconductor doped glass or polymer films can be much faster because of the higher surface density of the carriers responsible for the nonlinear behavior. It will be shown how excited electronic levels of the quantum dots can be obtained from the inflection points in their absorption spectra and the size and distribution of the particles from luminescence spectra. The semiconductor doped glasses are compared to glasses doped by organic dyes having nonlinear properties.

Enrique Berman Professor of Solar Energy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.V.Shkunov, B. Ya. Zeldovich, “Optical phase conjugation”,Scientific American 253(12):40 1985.

    Google Scholar 

  2. R. Reisfeld and C.K. Jorgensen, “Optical Properties of Colorants or Luminescent Species in Sol-Gel Glasses”, Structure & Bonding, 77:(1991).

    Google Scholar 

  3. R. Reisfeld, “Luminescence and nonradiative processes in porous glasses” Int’l School of Atomic and Molecular Spectroscopy. 9th Course,Advances in Nonradiative Processes in Solids, Erice, Italy. Plenum , (June 15–19, 1989).

    Google Scholar 

  4. R. Reisfeld, M. Eyal, R. Gvishi, “Spectroscopic behaviour of fluorescein and its di(mercury acetate) adduct in glasses”, Chem. Phys. Lett., 138:377 (1987).

    Google Scholar 

  5. M.A. Kramer, W.R. Tompkin and R.W. Boyd, “ Nonlinear optical interactions in fluorescein doped boric acid”, Phys. Rev.A, 34:2026 (1986).

    Article  ADS  Google Scholar 

  6. R. Reisfeld, M. Eyal, R. Gvishi and C.K. Jorgensen, “Photochemical behaviour of luminescent dyes in sol-gel and boric acid glasses”, Proc. 7th Int ’ l Symp. on the Photochemistry and Photophysics of Coordination Compounds, Germany, March 29-April 2, 1987. Springer-Verlag, Heidelberg-New York pp. 313–316 (1987).

    Google Scholar 

  7. S. Graham, R. Renner, C. Klingshirn, W. Schrepp, R. Reisfeld, D. Brusilovsky and M. Eyal, “Pump and probe beam measurements in organic materials”, Paper presented at Int. Conf. Materials for Nonlinear and Electro-optics, Cambridge, 1989, Inst. Phys. Conf. Ser. No. 103; Section 2.2, Bristol, New York, pp. 157–162 (1989).

    Google Scholar 

  8. S. Graham, M. Thoma, M. Eyal, D. Brusilovsky, R. Reisfeld, S.V. Gaponenko, V. Yu Lebed, L.G. Zimin and C. Klingshirn, “Laser Induced Gratings and Nonlinear Optics in Organic Materials”, in Organic Materials for Nonlinear Optics II, Edited by R.A. Hann and D. Bloor, Royal Society of Chemistry, Thomas Graham House, Cambridge 1991, p. 142.

    Google Scholar 

  9. S. Graham, M. Eyal, M. Thoma, D. Brusilovsky, R. Reisfeld and C. Klingshirn, “Nonlinear absorption and laser induced gratings in glasses doped with acridine orange and methyl orange”, J. Luminescence 48&49:325 (1991).

    Article  Google Scholar 

  10. U. Itoh, M. Takakusa, T. Moriya, S. Saito, “ Optical gain of Coumarine doped thin film laser”, Jap. J. Appl. Phys. 16:1059 (1977).

    Article  ADS  Google Scholar 

  11. R.M. O’Connell, T.T. Saito, “ Plastics for high-power laser applications: a review”, Opt. Eng.. 22:393 (1983).

    Google Scholar 

  12. R. Reisfeld, “ Optical behaviour of molecules in glasses prepared by the sol-gel method”, Proc. Winter School on Glasses and Ceramics from Gels, SOL-GEL Science and Technology. Brazil, Aegerter, M.A. Jefelici, M. Souza, D.F. Zanotto E.D. eds. World Scientific, Singapore p. 323 (1989)

    Google Scholar 

  13. R. Reisfeld, “Spectroscopy and applications of molecules in glasses”, J. Non-Cryst. Solids 121:254 (1990).

    Article  ADS  Google Scholar 

  14. See: J.D. Mackenzie, D.R., Ulrich (ed.) Proc. Third International Conference on Ultrastructure Processing of Ceramics, Glasses and Composites, San Diego, 1987, Wiley, NY (1988).

    Google Scholar 

  15. R. Reisfeld, “Theory and applications of spectroscopically active glasses prepared by the sol-gel method”, Sol-Gel Optics, SPIE Int’l Symposium on Optical and Optoelectronic Applied Science and Engineering, San Diego, California,July 8–13, 1990, SPIE Proc. 1328: paper 1328–04 (1990).

    Google Scholar 

  16. H. Dislich, Thin Films from the sol-gel process, in: “Sol-gel technology for thin films, fibers, preforms, electronics and special shapes”, L. Klein, ed., Noyes Publishers, Park Ridge, New Jersey, USA, (1988).

    Google Scholar 

  17. C.Sanchez, J. Livage, “ Sol-gel density from metal alkoxide precursors ”, New J. Chem. 14:513 (1990).

    Google Scholar 

  18. J. McKiernan, S.A. Yamanaka, B. Dunn and J.I. Zink, “Spectroscopy and laser action of Rhodamine 6G doped aluminosilicate Xerogels”, J. Phys. Chem., 94:5652 (1990).

    Article  Google Scholar 

  19. H. Schmidt and H. Wolter, “ Organically modified ceramics and their applications”, J. Non-Cryst. Solids, 121:428 (1990).

    Article  ADS  Google Scholar 

  20. E.J.A. Pope, J.D. Mackenzie, “ Sol-gel processing of silica”, J. Non-Cryst. Solids, 87:185 (1986).

    Article  ADS  Google Scholar 

  21. E.J. A. Pope, J.D. Mackenzie, “ Transparent silica gel-PMMA composites”, J. Mater. Res., 4(4):1018 (1989).

    Article  ADS  Google Scholar 

  22. J. Fricke, Phys. Unserer Zeit 17:151 (1986).

    Article  ADS  Google Scholar 

  23. D. Avnir, D. Levy, R. Reisfeld, “The nature of silica glass cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G”, J. Phys. Chem., 88:5956 (1984).

    Article  Google Scholar 

  24. D. Avnir, V.R. Kaufman, R. Reisfeld, “Organic fluorescent dyes trapped in silica and silica-titania thin films by the sol-gel method, Photophysical film and cage properties”, J. Non-Cryst. Solids, 74:395, (1985).

    Article  ADS  Google Scholar 

  25. R. Reisfeld, V. Chernyak, M. Eyal, C.K. Jorgensen, “Irreversible spectral changes of cobalt (II) by moderate heating in sol-gel glasses and their ligand field rationalization”, Chem. Phys. Lett., 164:307 (1989).

    Article  ADS  Google Scholar 

  26. J. McKernan, J.C. Pouxviel, B. Dunn, J.I. Zink, “Rigidochromism as a Probe of Gelation and Densification of Silicon and Mixed Aluminum Alkoxide”, J. Phys. Chem., 93:2129 (1989).

    Article  Google Scholar 

  27. B. Lintner, N. Arfsten, H. Dislich, H. Schmidt, G. Philipp and B. Seiferling, “ A first look on the optical properties of ormosils”,J. Non Cryst. Solids, 100:378 (1988).

    Article  ADS  Google Scholar 

  28. R. Reisfeld and C.K. Jorgensen, “Luminescent Solar Concentrators for Energy Conversion”, Structure & Bonding, 49:1 (1982).

    Article  Google Scholar 

  29. R. Reisfeld and G. Seybold, “Stable Solid-State tunable lasers in the visible”, J. Luminescence, Vol. 48&49:98 (1991).

    Google Scholar 

  30. R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burshtein, J. Ivri, “New solid state tunable laser in the visible”, Chem. Phys. Lett., 160:43 (1989).

    Article  ADS  Google Scholar 

  31. Y. Kobayashi, Y. Kurokawa, Y. Imai, “A Transparent Alumina Film Doped with Laser Dye and its Emission Properties”, J. Non-Cryst. Solids, 105:198 (1988).

    Article  ADS  Google Scholar 

  32. R. Reisfeld and G. Seybold, “Solid-state tunable lasers in the visible based on luminescent photoresistant heterocyclic colorants”, Chimia, 44:295 (1990).

    Google Scholar 

  33. F. Salin, G. LeSaux, P. Georges, A. Brun, C. Bagnall, J. Zarzycki, “Efficient tunable solid-state laser near 630 nm using sulforhodamine 640 doped silica gel”, Opt. Lett., 14:785 (1989).

    Article  ADS  Google Scholar 

  34. A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles”, Chem. Rev., 89:1861 (1989).

    Article  Google Scholar 

  35. M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald and L.E. Brus, “Electronic Structure and PhotoexcitedCarrier Dynamics in Nanometer-Size CdSe Clusters”, Phys. Rev. Lett., 65:1623 (1990).

    Article  ADS  Google Scholar 

  36. D. Brusilovsky, M. Eyal and R. Reisfeld, “Absorption spectra, energy dispersive analysis of X-rays and transmission electron microscopy of silver particles in sol-gel glass films”, Chem. Phys. Lett, 153:203 (1988).

    Article  ADS  Google Scholar 

  37. H.R. Wilson, “ Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators ”, Solar Energy Mat., 16:223 (1987).

    Article  ADS  Google Scholar 

  38. R. Rossetti, J.L. Ellison, J.M. Gibson and L.E. Brus, “Size Effects in the excited electronic states of small colloidal CdS crystallites”, Chem. Phys.,80:4464 (1984).

    ADS  Google Scholar 

  39. L.E. Brus, “ Electron-electron and electron-hole interactions in small semiconductor crystallites”, J. Chem.Phys., 80:4403 (1984).

    Article  ADS  Google Scholar 

  40. H.M. Schmidt and H. Weller, “Quantum Size Effects in Semiconductor Crystallites: Calculation of the Energy Spectrum for the Confined Exciton”, Chem.Phys. Lett., 129:615 (1986).

    Article  ADS  Google Scholar 

  41. T. Rajh, M.I. Vucemilovic, N.M. Dimitrijevic, 0.I. Micic and A.J. Nozik, “Size Quantization of Colloidal Semiconductor Particles in Silicate Glasses”, Chem. Phys. Lett., 143:305 (1988).

    Article  ADS  Google Scholar 

  42. S. Modes and P. Lianos, “Structural Study of Silicate Glasses by Luminescence Probing: The Nature of Small Semiconductor Particles Formed in Glasses”, Chem. Phys. Lett., 153:351 (1988).

    Article  ADS  Google Scholar 

  43. N. Tohge, M. Asuka and T. Minami, “Doping of CdS Semiconductor Crystallites to Si02 Glasses by the sol-gel process”, Chem. Express, 5:521 (1990).

    Google Scholar 

  44. M. Nogami, K. Nagasaki and M. Takata, “CdS Microcrystal-Doped Silica Glass prepared by the sol-gel process”, J. Non Cryst. Solids, 122:101 (1990)

    Article  ADS  Google Scholar 

  45. S. Schmitt-Rink, D.A.B. Miller and D.S. Chemla, “ Theory of the linear and nonlinear optical properties of semiconductor microcrystallites”, Phys. Rev.B, 35:8113 (1987).

    Article  ADS  Google Scholar 

  46. Y. Wang, A. Suna and W. Mahler, “ Nonlinear optical properties of polymers”, Mat. Res. Symp. Proc., 109:18 (1988).

    Google Scholar 

  47. Y. Ohashi, M. Ito, T. Hayashi, A. Nitta, H. Matsuda, S. Okada, H. Nakanishi and M. Kato, “ CdS Particle Doped Polymer Films for Nonlinear Optics”, in: “Nonlinear optics of Organics and Semiconductors”, Vol.36 T. Kobayashi (ed.), Springer-Verlag Berlin, Heidelberg p. 81 (1989).

    Chapter  Google Scholar 

  48. H. Minti, M. Eyal and R. Reisfeld, “Quantum dots of CdS in thin glass films prepared by the sol-gel technique”, submitted to Chem. Phys. Lett., (1991).

    Google Scholar 

  49. R. Reisfeld, H. Minti and M. Eyal, “ Active glasses prepared by the sol-gel method including islands of CdS or silver”, the Int’l Congress on Optical Sciences and Engineering, 11–10 March 1991 Hague, SPIE Proc., 1513: (1991).

    Google Scholar 

  50. H. Schmidt, “ Preparation, application and potential of ORMOCERs”, Proc. Winter School on Glasses and Ceramics from Gels, Sol-Gel Science and Technology, Brazil, August 1989. Eds. M.A. Aegerter, M. Jafelicci Jr., D. Souza and E.D. Zanotto, World Scientific, Singapore, New-Jersey, London, Hong-Kong, p. 432.

    Google Scholar 

  51. R. Reisfeld, V. Chernyak, M. Eyal and A. Weitz, “Laser and spectroscopic characterization of thin films”, Proc.Int ’ l Conf. on Optical Science and Engineering, Optical Materials Technology for Energy Efficiency and Energy Conversion VII, Solar Collecting Devices, SPIE Proceedings, 1016:240, (1988).

    Google Scholar 

  52. M. Eyal, R. Reisfeld, V. Chernyak, L. Kaczmarek and A. Grabowska, “Absorption, emission and lifetimes of [2,2-bipyridyl]-3,3’-diol in sol-glass and in polymethylmethacrylate”, Chem. Phys. Lett., 176:531 (1991).

    Article  ADS  Google Scholar 

  53. F. Kajzar and J. Messier, “ Third-harmonic generation in liquids”, Phys. Rev.A, 32:2352 (1985).

    Article  ADS  Google Scholar 

  54. G. Berkovic, R. Superfine, P. Guyot-Sionnest. Y.R. Shen and P.N. Prasad, “ Study of diacetylene monomer and polymer monolayers using second-and third-harmonic generation”J. Opt. Soc. Am.B, 5(3):668 (1988).

    Article  ADS  Google Scholar 

  55. F. Kajzar, J. Messier and C. Rosillio, “Third harmonics generation in liquids” J. Appl. Phys., 60:9 (1986).

    Article  Google Scholar 

  56. D. Neher, A. Wolf, C.Bubeck and G. Wegner, “ Third-harmonic generation in polyphenylacetylene; Exact determination of nonlinear optical susceptibilities in ultrathin films”, Chem. Phys. Lett., 163:116 (1989).

    Article  ADS  Google Scholar 

  57. W.E. Torruellas, R. Zanoni, M.B. Marques, G.I. Stegeman, G.R. Mohlmann, E.W.P Erdhuisen and W.H.G. Horsthuis, “ Measurements of third-order nonlinearities of side-chain substituted polymers”, Chem. Phys. Lett., 175:267 (1990).

    Article  ADS  Google Scholar 

  58. H.W.K. Tom, T.F. Heinz and Y.R. Shen, “ Second-harmonics reflection from silicon surfaces and its relation to structural symmetry”, Phys. Rev. Lett., 51:1983 (1983).

    Article  ADS  Google Scholar 

  59. V. Mizrachi and J.E. Sipe, “ Phenomenological treatment of suface second-harmonic generation”, J. Opt. Soc. Am.B, 5(3):660 (1988).

    Article  ADS  Google Scholar 

  60. B. Buchalter and G.R. Meredith, “ Third order optical susceptibility of glasses determined by third-harmonics generation”, Appl. Opt., 21:3221 (1982).

    Article  ADS  Google Scholar 

  61. J.H. Simmons, E.M. Clausen Jr. and B.G. Potter Jr., “ Nonlinear optical composite materials using CdS”, in “ Ultrastructure processing of advanced ceramics”, Editors J.D. Mackenzie, D.R. Ulrich. Proceedings of the Third Int’l Conference on Ultrastructure Processing of Ceramics, Glasses and Composites, 23–27 Feb. 1987, San-Diego, Calif. A Wiley Interscience Publication, John Wiley and Sons, 1988, page 661.

    Google Scholar 

  62. J. Yumoto, H. Shinjima and N. Nesugi, K. Tsunetomo, H. Nasu, Y. Osaka, “Optical nonlinearity of CdSe microcrystallites in a sputtered film”, Appl. Phys. Lett., 57(23):2393 (1990).

    Article  ADS  Google Scholar 

  63. M. Nogami, Yi-Qing Zhu, Y. Tohyama and K. Nagasaki, “ Preparation and nonlinear optical properties of quantum-sized CuCl doped silica glass by the sol-gel process”, J. Am. Ceram. Soc., 74(1):238 (1991).

    Article  Google Scholar 

  64. T. Ishihara and T. Goto, “ Very large X(3) due to coherency of an exciton in PbI2”, in“ Nonlinear Optics of Organics and Semiconductors”, Editor K. Kobayashi, Springer Proceedings in Physics, Vol.36, page 72, Springer-Verlag 1989.

    Chapter  Google Scholar 

  65. F. Hache, D. Ricard and C. Flytzanis, “ Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum effects”, J. Opt. Soc. Am. B, 3(12):1647 (1986).

    Article  ADS  Google Scholar 

  66. M. Sinclair, D. Moses, K. Akagi and A.J. Heeger, “ Structural relaxation and nonlinear zero-point fluctuations as the origin of the anisotropic third order nonlinear optical susceptibility in trans(CH)x”, in “Nonlinear optical effects in organic polymers”, Editors F. Kajzar, P. Prasad and D. Ulrich. NATO ASI Series E: Applied Sciences, vol. 162. Kluwer Academic Publishers, 1989 page. 29.

    Chapter  Google Scholar 

  67. J. Messier, “ Third order nonlinear susceptibility in semiconducting polymers”, ibid, page 47.

    Google Scholar 

  68. L.R. Dalton, “ Synthesis of new nonlinear optical ladder polymers”, ibid page 123.

    Google Scholar 

  69. C. Bubeck, A. Kaltbeitzel, R.W. Lenz, D. Neher, J.R. Stenger-Smith, G. Wegner, “ Nonlinear optical properties of poly(p-phenylene vinylene) thin films”, ibid, page 143.

    Google Scholar 

  70. P.N. Prasad, “ Ultrafast third-order nonlinear processes in polymeric films”, ibid, page 351.

    Google Scholar 

  71. R.A. Lessard, J.J.A. Couture, P. Galarneau, “ Application of third order nonlinearities of dyed PVA to real-time holography”, ibid, page 343.

    Google Scholar 

  72. R. Reisfeld, “ Radiative and nonradiative transitions of rare-earth ions in glasses”, Structure and Bonding, 22:123 (1975).

    Article  Google Scholar 

  73. Al.L. Efros and A.L. Efros, “Interband absorption of light in semiconductor sphere”, Sov. Phys. Semicond., 16:772 (1982).

    Google Scholar 

  74. A. Fojtik, H. Weller, U. Koch and A. Henglein, “ Photochemistry of colloidal metal sulfides. 8. Photophysics of extremely small CdS particles: Q-state CdS and magic numbers”, Ber. Bunsenges. Physik. Chem., 88:649 (1984).

    Article  Google Scholar 

  75. L. Katsikas, A. Eichmuller, M. Gersig and H. Weller, “Discrete excitonic transitions in quantum-sized Cds particles”, Chem. Phys. Lett., 172:201 (1990).

    Article  ADS  Google Scholar 

  76. R. Powell, Private communication.

    Google Scholar 

  77. A. Uhrig, L. Banyai, Y.Z. Hu, S.W. Koch, C. Klingshirn and N. Neuroth, High-excitation photoluminescence, studies of CdS1-xSex quantum dots”, Z. Phys.B, 81:385 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reisfeld, R. (1992). Semiconductor Quantum Dots in Amorphous Materials. In: Di Bartolo, B., Beckwith, C. (eds) Optical Properties of Excited States in Solids. NATO ASI Series, vol 301. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3044-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3044-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6327-9

  • Online ISBN: 978-1-4615-3044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics