Skip to main content

Mechanisms Involved in Platelet Procoagulant Response

  • Chapter
Mechanisms of Platelet Activation and Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 344))

Abstract

Blood platelets are essential to the normal hemostatic process. Vessel wall injury produces several platelet agonists which through specific membrane receptors elicit a variety of cellular responses. Shape change, activation of binding sites for fibrinogen and other adhesive molecules, and secretion of intracellular granule contents ensure the rapid formation of large platelet aggregates, which prevent further loss of blood from the injured vessel. In addition, an important platelet response is the surface exposure of specific phospholipids, providing a catalytic surface for the assembly of enzyme complexes of the coagulation cascade. This platelet procoagulant response leads to a dramatic increase in the rate of thrombin formation, which allows rapid formation of an insoluble meshwork of fibrin, required to consolidate the primary haemostatic plug. On the other hand, the same catalytic surface is also instrumental in negative feedback control of the coagulation cascade by activated protein C. Platelets are the primary source of procoagulant lipid surfaces, but other cells such as erythrocytes or endothelial cells may, sometimes, under pathological conditions- also become procoagulant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S.S., Rawala-Sheikh, R., Ashby, B. and Walsh, P.N., 1989, Platelet receptor-mediated factor X activation by factor IXa. High-affinity IXa receptors induced by factor VIII are deficient on platelets in Scott syndrome, J. Clin. Invest. 84:824.

    Article  PubMed  CAS  Google Scholar 

  • Allan, D. and Michell, R.H., 1975, Accumulation of 1,2 diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J.M., O’Reilly, R., Whitney, M. and Lucy, J.A., 1990, Surface exposure of phosphatidylserine is associated with the swelling and osmotically-induced fusion of human erythrocytes in the presence of Ca2+, Biochim. Biophys. Acta 1028:14.

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin, A.R. and Grondin, G., 1991, Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena, Biochim. Biophys. Acta 1071:203.

    Article  PubMed  CAS  Google Scholar 

  • Revers, E.M., Comfurius, P. and Zwaal, R.F.A., 1983, Changes in membrane phospholipid distribution during platelet activation, Biochim. Biophys. Acta 736:57.

    Article  Google Scholar 

  • Revers, E.M., Comfurius, P., Nieuwenhuis, H.K., Levy-Toledano, S., Enouf, J., Belluci, S., Caen, J.P. and Zwaal, R.F.A., 1986, Platelet prothrombin converting activity in hereditary disorders of platelet function, Br. J. Haematol. 63:335.

    Google Scholar 

  • Revers, E.M., Tilly, R.H.J., Senden, J.M.G., Comfurius, P. and Zwaal, R.F.A., 1989, Exposure of endogenous phosphatidylserine at the outer surface of stimulated platelets is reversed by restoration of aminophospholipid translocase activity, Biochemistry 28:2382.

    Article  Google Scholar 

  • Revers, E.M., Wiedmer, T., Comfurius, P., Shattil, S.J., Weiss, H.J., Zwaal, R.F.A. and Sims, P.J., 1992, Defective Ca’+-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome, Blood 79:380.

    Google Scholar 

  • Bitbol, M., Fellmann, P., Zachowski, A. and Devaux, P.F., 1987, Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocytes, Biochim. Biophys Acta 904:268.

    Article  PubMed  CAS  Google Scholar 

  • Blumenfeld, N., Zachowski, A., Galacteros, F., Beuzard, Y. and Devaux, P.F., 1991, Transmembrane mobility of phospholipids in sickle erythrocytes: the effect of deoxygenation on diffusion and asymmetry, Blood 77:849.

    PubMed  CAS  Google Scholar 

  • Chandra, R., Joshi, P.C., Bajpai, V.K. and Gupta, C.H., 1987, Membrane phospholipid organization in calcium-loaded human erythrocytes, Biochim. Biophys. Acta 902:253.

    Article  PubMed  CAS  Google Scholar 

  • Chap, H.J., Zwaal, R.F.A. and van Deenen, L.L.M., 1977, Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochim. Biophys. Acta 467:146.

    Article  PubMed  CAS  Google Scholar 

  • Comfurius, P., Revers, E.M. and Zwaal, R.F.A., 1985, The involvement of cytoskeleton in the regulation of transbilayer movement of phospholipids in human blood platelets, Biochim. Biophys. Acta 815:143.

    Article  PubMed  CAS  Google Scholar 

  • Comfurius, P., Senden, J.M.G., Tilly, R.H.J., Schroit, A.J., Revers, E.M. and Zwaal, R.F.A. 1990, Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium induced shedding of plasma membrane and inhibition of aminophospholipid translocase, Biochim. Biophys. Acta 1026:153.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J. and Schroit, A.J., 1988, Transbilayer movement of phosphatidylserine in erythrocytes; inhibition of transport and preferential labeling of a 31 kD protein by sulthydryl reactive reagents, Biochemistry 27:848.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J., Bucana, C., Fidler, I.J. and Schroit, A.J., 1989, Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer leaflet lipid by prothrombinase complex formation, Proc. Natl. Acad. Sci. U.S.A. 86:3184.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J., Gillum, K. and Schroit, A.J., 1990, Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine, Biochim. Biophys. Acta 1025:82.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, N., 1972, The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma, Br. J. Haematol. 21:53.

    Article  Google Scholar 

  • Esmon, C.T., 1992, The protein-C anticoagulant pathway, Arterioscleros. Thromb. 12, 135.

    Article  CAS  Google Scholar 

  • Fox, J.E.B., Austin, C.D., Boyles, J.K. and Steffen, P.K., 1990a, Role of membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the plateletplasma membrane, J. Cell Biol. 111:483.

    Article  CAS  Google Scholar 

  • Fox, J.E.B., Reynolds, C.C. and Austin, C.D., 1990b, The role of calpain in stimulus-response coupling: evidence that calpain mediates agonist-induced expression of procoagulant activity in platelets, Blood 76:2510.

    CAS  Google Scholar 

  • Fox, J.E.B., Austin, C.D., Reynolds, C.C. and Steffen, P.K., 1991, Evidence that agonist-induced activation of calpain causes shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets, J. Biol. Chem. 266:13289.

    PubMed  CAS  Google Scholar 

  • Franck, P.F.H., Revers, E.M., Lubin, B.H., Comfurius, P., Chiu, D.T.-Y., Op den Kamp, J.A.F., Zwaal, R.F.A., van Deenen, L.L.M. and Roelofsen, B., 1985, Uncoupling of the membrane skeleton from the lipid bilayer: the cause of accelerated phospholipid flip-flop leading to enhanced procoagulant activity of sickle cells, J. Clin. Invest. 75:183.

    Article  PubMed  CAS  Google Scholar 

  • Frederik, P.M., Stuart, M.C.A., Bomans, P.H.H., Busing, W.M., Burger, K.N.J. and Verkley, A.J., 1991, Perspective and limitations of cryo-electron microscopy, Microscopy 161:253.

    Article  CAS  Google Scholar 

  • Gilbert, G.E., Sims, P.J., Wiedmer, T., Furie, B., Furie, B.C. and Shattil, S.J., 1991, Platelet-derived microparticles express high-affinity receptors for factor VIII, J. Biol. Chem. 266:17261.

    PubMed  CAS  Google Scholar 

  • Haest, C.W.M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, K.K., Hattori, R., Esmon, C.T. and Sims, P.J., 1990, Complement proteins С5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for the assembly of the prothrombinase complex, J. Biol. Chem. 265:3809.

    PubMed  CAS  Google Scholar 

  • Kane, W.H. and Majerus, P.W., 1982, The interaction of human coagulation factor Va with platelets, J. Biol. Chem. 257:3963.

    PubMed  CAS  Google Scholar 

  • Mann, K.G., Nesheim, M.E., Church, W.R., Haley, P. and Krishnaswamy, S., 1990, Surface dependent reactions of the vitamin K-dependent enzyme complexes, Blood 76:1.

    PubMed  CAS  Google Scholar 

  • Morrot, G., Zachowski, A. and Devaux, P.F., 1990, Partial purification and characterization of the human erythrocyte Mg2+-ATPase, FEBS lett. 266:29.

    Article  PubMed  CAS  Google Scholar 

  • Op den Kamp, J.A.F., 1979, Lipid asymmetry in membranes, Ann. Rev. Biochem. 48:47.

    Article  Google Scholar 

  • Rosing, J., Tans, G., Govers-Riemslag, J.W.P., Zwaal, R.F.A. and Hemker, H.C., 1980, The role of phospholipids and factor Va in the prothrombinase complex, J. Biol. Chem. 255:274.

    PubMed  CAS  Google Scholar 

  • Rosing, J., Revers, E.M., Comfurius, P., Hemker, H.C., van Dieijen, G., Weiss, H.J. and Zwaal, R.F.A., 1985a, Impaired factor X- and prothrombin activation associated with decreased phospholipids exposure in platelets from a patient with a bleeding disorder, Blood 65:1557.

    CAS  Google Scholar 

  • Rosing, J., Van Rijn, J.L.M.L., Revers, E.M., Van Dieijen, G., Comfurius, P. and Zwaal, R.F.A., 1985b, The role of activated human platelets in prothrombin and factor X activation, Blood 65:319.

    CAS  Google Scholar 

  • Rosing, J., Speijer, H. and Zwaal, R.F.A., 1988, Prothrombin activation on phospholipid membranes with positive electrostatic potential, Biochemistry 27:8.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, H., Andersson, L.-O. and Нёglund, S., 1982, Isolation and characterization of lipid-protein particles containing platelet factor 3 released from human platelets, Biochem. J. 203:303.

    PubMed  CAS  Google Scholar 

  • Sandberg, H., Bode, A.P., Dombrose, F.A., Hoechli, M. and Lentz, B.R., 1985, Expression of procoagulant activity in human platelets: release of membranous vesicles providing platelet factor 1 and platelet factor 3, Thrоmb. Res. 39:63.

    Article  CAS  Google Scholar 

  • Schick, P.K., Kurica, K.B. and Chacko, G.K., 1976, Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane, J. Clin. Invest. 57:1221.

    Article  PubMed  CAS  Google Scholar 

  • Schroit, A.J. and Zwaal, R.F.A., 1991, Transbilayer movement of phospholipids in red cell and platelet membranes, Biochim. Biophys. Acta 1071:313.

    Article  PubMed  CAS  Google Scholar 

  • Schroit, A.J., Bloy, C., Connor, J. and Cartrou, J.P., 1990, Involvement of Rh blood group polypeptides in the maintenance of aminophospholipid asymmetry, Biochemistry 29:10303.

    Article  PubMed  CAS  Google Scholar 

  • ScЬroit, A.J., Madsen, J.W. and Tanaka, Y., 1985, In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem. 260:5131.

    Google Scholar 

  • Seigneuret, M. and Devaux, P.F., 1984, ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes, Proc. Natl. Acad. Sci. U.S.A. 81:3751.

    Article  PubMed  CAS  Google Scholar 

  • Sims, P.J., Faioni, E.M., Wiedmer, T. and Shattil, S.J., 1988, Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity, J. Biol. Chem. 263:18205.

    PubMed  CAS  Google Scholar 

  • Sims, P.J., Wiedmer, T., Esmon, C.T., Weiss, H.J. and Shattil, S.J., 1989, Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane, J. Biol. Chem. 264:17049.

    PubMed  CAS  Google Scholar 

  • Tans, G., Rosing, J., Thomassen, M.C.L.G.D., Heeb, M.J., Zwaal, R.F.A. and Griffin, J.H., 1991, Comparison of anticoagulant and procoagulant properties of stimulated platelets and platelet-derived microparticles, Blood 77:2641.

    PubMed  CAS  Google Scholar 

  • Thiagarajan, P. and Tait, J.F., 1991, Collagen-induced exposure of anionic phospholipid in platelets and platelet-derived microparticles, J. Biol. Chem. 266: 24302.

    PubMed  CAS  Google Scholar 

  • Tilly, R.H.J., Senden, J.M.G., Comfurius, P., Revers, E.M. and Zwaal, R.F.A., 1990, Increased aminophospholipid translocase activity in platelets during secretion, Biochim. Biophys. Acta 1029:188.

    Article  PubMed  CAS  Google Scholar 

  • Tracy, P.B., Peterson, J.M., Nesheim, M.E., McDuffie, F.C. and Mann, K.G., 1979, Interaction of coagulation factor V and factor Va with platelets, J. Biol. Chem. 254:10345.

    Google Scholar 

  • Van Dam-Mieras, M.C.E., Bruggeman, C.A., Muller, A.D., Debie, W.H.M. and Zwaal, R.F.A., 1987, Induction of endothelial cell procoagulant activity by cytomegalovirus infection., 7hromb. Res. 47:69.

    Article  Google Scholar 

  • Van de Water, L., Tracy, P.B., Aronson, D., Mann, K.G. and Dvorak, H.F., 1985, Tumor cell generation of thrombin via functional prothrombinase assembly, Cancer Res. 45:5521.

    Google Scholar 

  • Van Dieijen, G., Tans, G., Rosing, J. and Hemker, H.C., 1981, The role of phospholipids and factor VIIla in the activation of bovine factor X, J. Biol. Chem. 256:3433.

    PubMed  Google Scholar 

  • Verhallen, P.F.J., Revers, E.M., Comfurius, P. and Zwaal, R.F.A., 1987, Correlation between calpain-mediated cytoskeletal degradation and expression of procoagulant activity. A role for the platelet membrane skeleton in the regulation of membrane lipid asymmetry? Biochim. Biophys. Acta 903:206.

    Article  PubMed  CAS  Google Scholar 

  • Visser, M.R., Tracy, P.B., Vercellotti, G.M., Goodman, J.L., White, J.G. and Jacob, H.S., 1988, Enhanced thrombin generation and platelet binding on herpes simplex virus-infected endothelium, Proc. Natl. Acad. Sci. U.S.A. 85:8227.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, H.J., Vi, W.J., Lages, B.A. and Rogers, J. (1979), Isolated deficiency of platelet procoagulant activity, Am. J. Med. 67:206.

    Article  PubMed  CAS  Google Scholar 

  • Wiedmer, T., Shattil, S.J., Cunningham, M. and Sims, P.J., 1990, Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor, Biochemistry 29:623.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, P., 1967, The nature and significance of platelet products in human plasma, Br. J. Haematol. 13:269.

    Article  PubMed  CAS  Google Scholar 

  • Zwaal, R.F.A., 1978, Membrane and lipid involvement in blood coagulation, Biochim. Biophys. Acta 515:163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bevers, E.M., Comfurius, P., Zwaal, R.F.A. (1993). Mechanisms Involved in Platelet Procoagulant Response. In: Authi, K.S., Watson, S.P., Kakkar, V.V. (eds) Mechanisms of Platelet Activation and Control. Advances in Experimental Medicine and Biology, vol 344. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2994-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2994-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6304-0

  • Online ISBN: 978-1-4615-2994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics