Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 61))

Abstract

The word “antimutagenesis” was first used by Novick and Szilard (51) to describe the lowering of the spontaneous mutation rate. Since then, Kada (26) has made antimutagenesis into a generic word to describe two types of events: the inactivation of mutagens or carcinogens before they can reach the DNA, and the events which can restore the DNA after lesions have occurred. J.W. Drake suggested the word “desmutagens” to Kada for mutagen inactivators, and P.J. Hastings since has suggested “countermutagens” as a synonym, and perhaps a more appropriate term. “Inhibition” of the spontaneous mutation rate, which Novick and Szilard were talking about, has plodded along without a species name, although Kada et al. (27) used the term “bioantimutagenesis” for the types of reactions which act at the level of the DNA, including both inhibition of inducibility of mutagenic repair processes and the lowering of the spontaneous mutation rate. The lowering of the spontaneous mutation rate deserves a name of its own, perhaps reflecting the essential quality of improving the fidelity with which DNA normally is replicated and repaired. Steinberg has recommended the term “fidelogen” as an alternative word for “bioantimutagen.” Fidelogens cover three classes, the “rate droppers,” which lower the spontaneous mutation rate, the “gash healers,” which reverse the lesions inducted by mutagens and carcinogens, and the “SOS stoppers,” which eliminate inducibility of mutagenic DNA repair. The perfect fidelogen is one that will carry out at least the first two of these three functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B.N. (1983) Dietary carcinogens and anticarcinogens. Science 221:1256–1264.

    Article  PubMed  CAS  Google Scholar 

  2. Ames, B.N., and L.S. Gold (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250:3–16.

    Article  PubMed  CAS  Google Scholar 

  3. Baltz, R.H., P.M. Bingham, and J.W. Drake (1976) Heat mutagenesis in bacteriophage T4: The transition pathway. Proc. Natl. Acad. Sci. ,USA 73:1269–1273.

    Article  PubMed  CAS  Google Scholar 

  4. Böhme, H. (1967) Genetic instability of an ultraviolet-sensitive mutant of Proteus mirabilis. Biochem. Biophys. Res. Comm. 28:191–196.

    Article  PubMed  Google Scholar 

  5. Brendel, M., and R.H. Haynes (1973) Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Molec. Gen. Genet. 125:197–216.

    Article  PubMed  CAS  Google Scholar 

  6. Cairns, J. (1986) A summary: And a look ahead. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 531–535.

    Chapter  Google Scholar 

  7. Chen, J., B. Derfler, A. Maskati, and L. Samson (1989) Cloning of eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherìchia coll Proc. Natl. Acad. Sci., USA 86:7961–7965.

    Article  CAS  Google Scholar 

  8. Clarke, C.H., and D.M. Shankel (1975) Antimutagenesis in microbial systems. BacterioL Rev. 39:33–53.

    PubMed  CAS  Google Scholar 

  9. Clarke, C.H., and D.M. Shankel (1988) Antimutagens against spontaneous and induced reversion of a lacZ frameshift mutation in E. coli K-12 strain ND-160. Mutat. Res. 202:19–23.

    Article  PubMed  CAS  Google Scholar 

  10. Conger, A.D., and L.M. Fairchild (1952) Breakage of chromosomes by oxygen. Proc. Natl. Acad. Sci. ,USA 38:289–299.

    Article  PubMed  CAS  Google Scholar 

  11. Coulondre, C., J.H. Miller, P.J. Farabaugh, and W. Gilbert (1978) Molecular basis of base substitution hotspots in E. coli. Nature 274:775–780.

    Article  PubMed  CAS  Google Scholar 

  12. Cunningham, R.P., and B. Weiss (1985) Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl. Acad. Sci., USA 82:4740478.

    Article  Google Scholar 

  13. Drake, J.W., and E.F. Allen (1968) Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33:339–344.

    Article  PubMed  CAS  Google Scholar 

  14. Ehrlich, M., X.-Y. Zhang, and M.N. Inamdar (1990) Spontaneous deamination of cytosine and 5-methylcytosine residues in DNA and replacement of 5 methylcytosine residues with cytosine residues. Mutat. Res. 238:277–286.

    Article  PubMed  CAS  Google Scholar 

  15. Esterbauer, H., P. Eckl, and A. Ortner (1990) Possible mutagens derived from lipids and lip precursors. Mutat. Res. 238:223–233.

    Article  PubMed  CAS  Google Scholar 

  16. Fabre, F., and H. Roman (1977) Genetic evidence for inducibility of recombination competence in yeast. Proc. Natl. Acad. Sci. ,USA 74:1667–1671.

    Article  PubMed  CAS  Google Scholar 

  17. Fridovich, I. (1978) The biology of oxygen radicals. Science 201:875–880.

    Article  PubMed  CAS  Google Scholar 

  18. Friedberg, E.C. (1984) DNA Repair. W.H. Freeman and Company, New York.

    Google Scholar 

  19. Game, J.C., and B.S. Cox (1972) Epistatic interactions between four rad loci in yeast. Mutat. Res. 16:353–362.

    Article  PubMed  CAS  Google Scholar 

  20. Grafström, R.C. (1990) In vitro studies of aldehyde effects related to human respiratory carcinogenesis. Mutat. Res. 238:175–184.

    Article  PubMed  Google Scholar 

  21. Hanawalt, P.C., and R.H. Haynes (1965) Repair replication of DNA in bacteria: Irrelevance of chemical nature of base defect. Biochem. Biophys. Res. Comm. 19:462–467.

    Article  PubMed  CAS  Google Scholar 

  22. Hastings, P.J., S.-K. Quah, and R.C. von Borstel (1976) Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature 264:719–722.

    Article  PubMed  CAS  Google Scholar 

  23. Haynes, R.H., and B.A. Kunz (1985) A possible role for deoxyribonucleotide pools in carcinogenesis. InBasic and Applied Mutagenesis ,A. Muhammed and R.C. von Borstel, eds. Plenum Press, New York, pp. 147–156.

    Chapter  Google Scholar 

  24. Inoue, T., T. Ohta, Y. Sadaie, and T. Kada (1981) Effect of cobaltous chloride on spontaneous mutation induction in a Bacillus subtilis mutator strain. Mutat. Res. 91:41–45.

    Article  PubMed  CAS  Google Scholar 

  25. Jyssum, K. (1968) Mutator factor in Neisserìa meningitides associated with increased sensitivity to ultraviolet light and defective transformation. J. Bad. 96:41–45.

    Google Scholar 

  26. Kada, T. (1982) Mechanisms and genetic implications of environmental antimutagens. In Environmental Mutagens and Carcinogens ,T. Sugimura, S. Kondo, and H. Takebe, eds. University of Tokyo Press, Tokyo, pp. 355–359.

    Google Scholar 

  27. Kada, T., T. Inoue, T. Ohta, and Y. Shirasu (1986) Antimutagens and their mode of action. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 181–196.

    Chapter  Google Scholar 

  28. Kasai, H., and S. Nishimura (1984) Hydroxylation of deoxyguanosine at the C 8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 12:2137–2145.

    Article  PubMed  CAS  Google Scholar 

  29. Kramer, W., B. Kramer, M.S. Williamson, and S. Fogel (1989) Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae Homology of PMS1 to procaryotic MutL and HexBJ. Bact. 171:5339–5346.

    PubMed  CAS  Google Scholar 

  30. Kunkel, T.A., and L.A. Loeb (1981) Fidelity of mammalian DNA polymerases. Science 213:765–767.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, A.T., and A. Cerami (1990) In vitro and in vivo reactions of nucleic acids with reducing sugars. Mutat. Res. 238:185–191.

    Article  PubMed  CAS  Google Scholar 

  32. Liehr, J.G. (1990) Genotoxic effects of estrogens. Mutat. Res. 238:269–276.

    Article  PubMed  CAS  Google Scholar 

  33. Lindahl, T. (1990) Repair of intrinsic DNA lesions. Mutat. Res. 238:305–311.

    Article  PubMed  CAS  Google Scholar 

  34. Loeb, L.A. (1989) Endogenous carcinogenesis: Molecular oncology into the twenty-first century. Cancer Res. 49:5489–5496.

    PubMed  CAS  Google Scholar 

  35. Loeb, L.A., and K.C. Cheng (1990) Errors in DNA synthesis: A source of spontaneous mutations. Mutat. Res. 238:297.304.

    Article  PubMed  CAS  Google Scholar 

  36. Loeb, L.A., and B.D. Preston (1986) Mutagenesis by apurinic/apyrimidinic sites. Ann. Rev. Genet. 20:201–230.

    Article  PubMed  CAS  Google Scholar 

  37. Lutz, W.K. (199) Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat. Res. 238:287–295.

    Article  PubMed  CAS  Google Scholar 

  38. MacPhee, D.G., R.H. Haynes, B.A. Kunz, and D. Anderson, eds. (1988) Genetic aspects of deoxyribonucleotide metabolism.. Mutat. Res. 200 (special issue):1-256.

    Google Scholar 

  39. Magni, G.E. (1963) The origin of spontaneous mutations during meiosis. Proc. Natl. Acad. Sci., USA 50:975–980.

    Article  PubMed  CAS  Google Scholar 

  40. Magni, G.E. (1964) Origin and nature of spontaneous mutations in meiotic organisms. J. Cell. Comp. Physiol. 64 (Suppl. 1): 165–172.

    Article  CAS  Google Scholar 

  41. Magni, G.E., and R.C. von Borstel (1962) Different rates of spontaneous mutations during mitosis and meiosis in yeast. Genetics 47:1097–1108.

    PubMed  CAS  Google Scholar 

  42. McBride, T.J., B.D. Preston, and L.A. Loeb (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30:207–213.

    Article  PubMed  CAS  Google Scholar 

  43. Mehta, R.D., and R.C. von Borstel (1982) Genetic activity of diethylstilbestrol in Saccharomyces cerevisiae Enhancement of mutagenicity by oxidizing agents. Mutat. Res. 92:49–61.

    Article  PubMed  CAS  Google Scholar 

  44. Meier, I., S.E. Shepard, and W.K. Lutz (1990) Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzylpyridine) (NBP) in vitro and binding to DNA in the rat. Mutat. Res. 238:193–201.

    Article  PubMed  CAS  Google Scholar 

  45. Michaels, M.L., L. Pham, Y. Nghiem, C. Cruz, and J.H. Miller (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucl. Acids Res. 18:3841–3845.

    Article  PubMed  CAS  Google Scholar 

  46. Michael, M.L., L. Pham, C. Cruz, and J.H. Miller (1991) MutM, a protein that prevents G.C→T.A transversions, is a formamidopyrimidine-DNAglycosylase. Nucl. Acids Res. 19:3629–3632.

    Article  Google Scholar 

  47. Mohn, G (1968) Korrelation zwischen verminderter Reparatur-fähigkeit für UV-Läsionen und hoher Spontanmutabilität eines Mutatorstammes von E. coli K-12. Molec. Gen. Genet. 101:43–50.

    Article  PubMed  CAS  Google Scholar 

  48. Morrison, A., R.B. Christensen, J. Alley, A.K. Beck, E.G. Bernstine, J.F. Lemontt, and C.W. Lawrence (1989) REV3 ,a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J. Bacteriol. 171:5659–5667.

    PubMed  CAS  Google Scholar 

  49. Muller, H.J. (1927) Artificial transmutation of the gene. Science 66:85–87.

    Article  Google Scholar 

  50. Muller, J.H., and L.M. Mott-Smith (1930) Evidence that natural radioactivity is inadequate to explain the frequency of “natural” mutations. Proc. Natl. Acad. Sci. ,USA 16:277–285.

    Article  PubMed  CAS  Google Scholar 

  51. Novick, A., and L. Szilard (1952) Anti-mutagens. Nature 170:926–927.

    Article  PubMed  CAS  Google Scholar 

  52. Parker, K.R., and R.C. von Borstel (1990) Antimutagenesis in yeast by sodium chloride, potassium chloride, and sodium saccharin. In Antimutagenesis and Anticarcinogenesis Mechanisms II ,Y. Kuroda, D.M. Shankel, and M.D. Waters, eds. Plenum Press, New York, pp. 367–371.

    Chapter  Google Scholar 

  53. Puglisi, P.O. (1966) Mutagenic and antimutagenic effects of acridine salts in yeast. Genetics 54:315–322.

    Google Scholar 

  54. Puglisi, P.P. (1967) Mutagenic and antimutagenic effects of acridine salts in yeast. Mutat. Res. 4:289–294.

    Article  PubMed  CAS  Google Scholar 

  55. Quah, S.-K., R.C. von Borstel, and P.J. Hastings (1980) Spontaneous mutations in yeast. Genetics 96:819–839.

    PubMed  CAS  Google Scholar 

  56. Quinones, A., and R. Piechocki (1985) Isolation and characterization of Escherichia coli antimutators. Molec. Gen. Genet. 201:315–322.

    Article  PubMed  CAS  Google Scholar 

  57. Ramatar, D., and B. Demple (1991) Biological role of yeast Apnl AP endonuclease/3’-repair diesterase and functional substitution in yeast by E. coli endonuclease IV. Book of abstracts, Symposium on Cellular Responses to Environmental DNA Damage, Banff,1-6 December 1991, Abstract A-20.

    Google Scholar 

  58. Rutten, B., and E. Gocke (1988) The “antimutagenic” effect of cinnamaldehyde is due to a transient growth inhibition. Mutat. Res. 201:97–105.

    Article  PubMed  CAS  Google Scholar 

  59. Samson, L., and J. Cairns (1977) A new pathway for DNA repair in Escherichia coli. Nature 267:281–283.

    Article  PubMed  CAS  Google Scholar 

  60. Shibutani, S., M. Takeshita, and A.P. Grollman (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodg. Nature 349:431–434.

    Article  PubMed  CAS  Google Scholar 

  61. Speyer, J.F., J.D. Daram, and A.B. Lenny (1966) On the role of DNA polymerase in base selection. Cold Spring Harbor Symp. Quant. Biol. 31:693–697.

    Article  PubMed  CAS  Google Scholar 

  62. Storz, G., M.F. Christman, H. Sies, and B.N. Ames (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl. Acad. Sci. ,USA 84:8917–8921.

    Article  PubMed  CAS  Google Scholar 

  63. Tamm, C., and Erwin Chargaff (1953) Physical and chemical properties of the apurinic acid of calf thymus. J. Biol. Chem. 203:689–694.

    PubMed  CAS  Google Scholar 

  64. Tchou J., H. Kasai, S. Shibutani, M.H. Chung, J. Laval, A.P. Grollman, and S. Nishimura (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci., USA 88:4690–4694.

    Article  PubMed  CAS  Google Scholar 

  65. von Borstel, R.C. (1969) On the origin of spontaneous mutations. Japan J. Genet. 4(Suppl.):102–105.

    Google Scholar 

  66. von Borstel, R.C. (1978) Measuring spontaneous mutation rates in yeast. In Methods in Cell Biology ,D.M. Prescott, ed. Academic Press, New York. Vol 20, pp. 1–24.

    Google Scholar 

  67. von Borstel, R.C. (1986) The relation of activation and inactivation to antimutagenic processes. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 39–43.

    Chapter  Google Scholar 

  68. von Borstel, R.C., and R.D. Mehta (1982) Nonmutagenic carcinogens. In Mutagens in Our Environment ,Marja Sora and H. Vainio, eds. Alan R. Liss, Inc., New York, pp. 47–47.

    Google Scholar 

  69. von Borstel, R.C., M.J. Bond, and C.M. Steinberg (1964) Spontaneous reversion rates of a super-suppressible mutant during mitosis and meiosis. Genetics 50:293 (abstract).

    Google Scholar 

  70. von Borstel, R.C, D.E. Graham, K.J. La Brot, and M.A. Resnick (1968) Mutator activity of an X-radiation-sensitive yeast. Genetics 60:233 (abstract).

    Google Scholar 

  71. Wang, W., U.G.G. Hennig, R.G. Ritzel, E.A. Savage, and R.C. von Borstel (1990) Double-stranded base-sequencing confirms the genetic evidence that the hom3-10 allele of Saccharomyces cerevisiae is a frameshift mutant, yeast 6 (Supplement): S76 (Abstract 02-10A).

    Google Scholar 

  72. Wink, D.A., K.S. Kasprzak, C.M. Maragos, R.K. Elespuru, M. Misra, T.M. Dunams, T.A. Cebula, W.H. Koch, A.W. Andrews, J.S. Allen, L.K. Keefer (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003.

    Article  PubMed  CAS  Google Scholar 

  73. Witkin, E.M. (1967) Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 20:17–55.

    Google Scholar 

  74. Zakharov, I.A., T.N. Kozina, and I.V. Federova (1968) Increase of spontaneous mutability in ultraviolet-sensitive yeast mutants. Dokl. Akad. Sci. ,SSSR 181:470–472.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

von Borstel, R.C., Hennig, U.G.G. (1993). Spontaneous Mutations and Fidelogens. In: Bronzetti, G., Hayatsu, H., De Flora, S., Waters, M.D., Shankel, D.M. (eds) Antimutagenesis and Anticarcinogenesis Mechanisms III. Basic Life Sciences, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2984-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2984-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6299-9

  • Online ISBN: 978-1-4615-2984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics