Skip to main content

Vibrational Relaxation Studied with Light

  • Chapter
Ultrashort Processes in Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 314))

Abstract

In this lecture I will deal with optical studies of vibrational dynamics. I will address the question of what (minimal number of) parameters characterize vibrational motion and under what conditions the relaxation-time approximation is valid. Within this assumption the vibrational dynamics are represented by, besides the eigenfrequency, the decay constants T 2 and T 1. More of these constants will be needed when different oscillators are coupled.

Following we will consider the extraction of these quantities from optical experiments. Relevant optical techniques are linear and nonlinear absorption spectroscopy, spontaneous Raman scattering and forced or “coherent” Raman scattering. The complications of strong coupling of the oscillators to the light field, in absorption spectroscopy referred to as polariton formation, will be dealt with.

It will be demonstrated that the conventional response theory that is employed to calculate line shapes has serious shortcomings. I refer to these “Kubo-type” response principles as to “one-way response theory” in contrast to, what I have coined, “two-ways response theory”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.P. Slichter. “Principles ofMagnetic Resonance,” Harper, New York (1965) 1st edition.

    Google Scholar 

  2. the far wings of a spectral line will never have a lorentzian shape as otherwise the moments would diverge.

    Google Scholar 

  3. S.W. Lovesey in “Dynamics of Solids and Liquids by Neutron Scattering,”, edited by S.W. Lovesey and T. Springer, Springer, Berlin (1977).

    Chapter  Google Scholar 

  4. Н. Mori, Progr. Theor. Phys. 33, 423 (1965).

    MATH  Google Scholar 

  5. D. Forster. “Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions,” Benjamin, Reading (1975).

    Google Scholar 

  6. P.A. Madden and R.M. Lynden-Bell, Chem. Phys. lett. 38 163 (1976).

    Article  Google Scholar 

  7. A. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. 60, 3929 (1974).

    Article  Google Scholar 

  8. А. Nitzan and J. Jortner, Mol. Phys. 25, 713 (1973).

    Article  Google Scholar 

  9. А. Nitzan and R.J. Silbey, J. Chem. Phys. 60, 4070 (1974).

    Article  Google Scholar 

  10. А. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. 63, 200 (1975).

    Article  Google Scholar 

  11. А. Carrington and A.D. McLachlan “Introduction to Magnetic Resonance, ” Hper, New York (1967).

    Google Scholar 

  12. C.B. Harris, R.M. Shelby, and P.A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977).

    Article  Google Scholar 

  13. R. Kroon, R. Sprik, and A. Lagendijk, Phys. Rev. B 42, 2785 (1990).

    Article  Google Scholar 

  14. А. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).

    Article  Google Scholar 

  15. N.G. van Kampen, Phys. Rep. 24С, 171 (1976).

    Google Scholar 

  16. N.G. van Kampen, “Stochastic Processes in Physics and Chemistry,” North-Holland, Amsterdam (1981).

    MATH  Google Scholar 

  17. Н. Mori, Progr. Theor. Phys. 34, 399 (1965); M. Dupuis, Progr. Theor. Phys. 37, 502 (1967).

    Google Scholar 

  18. R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).

    Article  Google Scholar 

  19. W. Götze and K.H. Michel, in “Dynamical Properties of Solids,” edited by G.H.Horton and A.A. Maradudin, North-Holland, Amsterdam (1974).

    Google Scholar 

  20. an outline of such an approach has been given recently in H. Bakker, submitted to J. Chem. Phys.

    Google Scholar 

  21. M. Born and E. Wolf. “Principles of Optics,” Pergamon, Oxford 6th edition, 1987).

    Google Scholar 

  22. R. Kubo, J. Phys. Soc. Jpn., 12, 570 (1957).

    Article  Google Scholar 

  23. C.J. Joachain,“Quantum Collision Theory,” North-Holland (1975).

    Google Scholar 

  24. R. Landauer in “Analogies in Optics and Micro Electronics”, edited by W. van Haeringen and D. Lenstra, Kluwer, Dordrecht (1990) p. 243.

    Chapter  Google Scholar 

  25. S.R. de Groot and L.G. Suttorp, “Foundations of Electrodynamics,” North-Holland, Amsterdam (1972).

    Google Scholar 

  26. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973) first edition. (The second edition differs considerably from the first edition.)

    Google Scholar 

  27. W.K. H. Panofsky and M. Phillips, “Classical Electricity and Magnetism,” Addison-Wesley, Reading (1962); P.M. Morse and H. Feshbach,“Methods of Theoretical Physics,” McGraw-Hill, New York (1953).

    Google Scholar 

  28. “Nonclassical Effects in Quantum Optics,”, edited by P. Meystre and D.F. Walls, American Institute of Physics, New York (1991).

    Google Scholar 

  29. V.E. Kravtsov, V.I. Yudson, and V.M. Agranovich, Phys. Rev. B 41, 2794 (1990).

    Article  Google Scholar 

  30. А.E. Siegman, “Lasers,” Oxford, Oxford (1986).

    Google Scholar 

  31. А. Laubereau, L. Greiter, and W. Kaiser, Appl. Phys. Lett. 25, 87 (1974);Н. Graener and A. Laubereau, Appl. Phys B 29, 213 (1982).

    Google Scholar 

  32. Н.J. Bakker, P.C.M. Planken, and A. Lagendijk, Nature 347, 745 (1990); H.J. Bakker, P.C.M. Planken, L. Kuipers, and A. Lagendijk, J. Chem Phys. 94, 1730 (1991); H.J. Bakker, P.C.M. Planken and A. Lagendijk, J. Chem. Phys. 94, 6007 (1991).

    Google Scholar 

  33. “Scattering and Localization of Classical Waves in Random Media,” edited by Ping Sheng, World Scientific, Singapore, (1990).

    Google Scholar 

  34. Th.M. Nieuwenhuizen, A. Lagendijk and B.A. van Tiggelen. Phys. Lett. A. 169, 191 (1992).

    Article  Google Scholar 

  35. А. Messiah, “Quantum Mechanics,” Vols. I and II, North-Holland, Amsterdam (1961); H.C. van de Hulst, “Light Scattering by Small Particles,”, Dover, New York (1981).

    Google Scholar 

  36. B.Á. van Tiggelen, A. Lagendijk, A. Tip, and G.F. Reiter, Eur. Phys. Lett. 15, 535 (1991).

    Article  Google Scholar 

  37. У. Yan and K.А. Nelson, J. Chem. Phys. 87 6240 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lagendijk, A. (1993). Vibrational Relaxation Studied with Light. In: Bron, W.E. (eds) Ultrashort Processes in Condensed Matter. NATO ASI Series, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2954-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2954-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6284-5

  • Online ISBN: 978-1-4615-2954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics