Skip to main content

Asymmetrical Changes in Ventricular Wall Mass by Asynchronous Electrical Activation of the Heart

  • Chapter
Interactive Phenomena in the Cardiac System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

Ventricular pacing causes asynchronous electrical activation of the ventricular wall, because impulse conduction occurs via muscle fibers rather than via the Purkinje system. Chronic (up to 3 months) ventricular pacing caused about 30% decrease of wall mass in early activated regions but did not change wall mass in late activated regions. These are the first data indicating that chronic asynchronous activation induces asymmetrical structural adaptations. This asymmetry is likely to be evoked by regional differences in contractile work, as demonstrated in previous experiments from our laboratory. The nature of the structural adaptation as well as its clinical implications deserve more detailed investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hotta S. The sequence of mechanical activation of the ventricle. Jap Circ J 1967; 31: 1568–1572.

    PubMed  CAS  Google Scholar 

  2. Prinzen FW, Augustijn CH, Allessie MA, Arts T, Delhaas T, Reneman RS. The time sequence of electrical and mechanical activation during spontaneous beating and ectopic stimulation. Eur Heart J 1992; 13: 535–543.

    PubMed  CAS  Google Scholar 

  3. Lister JW, Klotz DH, Jomain SL, Stuckey JH, Hoffman BF. Effect of pacemaker site on cardiac output and ventricular activation in dogs with complete heart block. Am J Cardiol 1964; 14: 494–503.

    Article  PubMed  CAS  Google Scholar 

  4. Badke FR, Boinay P, Covell JW. Effect of ventricular pacing on regional left ventricular performance in the dog. Am J Physiol 1980; 238, H858–H867.

    PubMed  CAS  Google Scholar 

  5. Prinzen FW, Augustijn CH, Arts T, Allessie MA, Reneman RS. Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol 1990; 259, H300–H308.

    PubMed  CAS  Google Scholar 

  6. Delhaas T, Arts T, Prinzen F. W, Reneman, R.S. Relation between regional electrical activation time and subepicardial fiber strain in the canine left ventricle. Pfluegers Arch 1993; 423: 78–87.

    Article  CAS  Google Scholar 

  7. Delhaas T, Arts T, Prinzen FW, Reneman, RS. Regional contractile work and electrical activation in the canine left ventricle during asynchronous electrical activation. Pfluegers Arch 1992; 420 (Suppl. 1): R110.

    Google Scholar 

  8. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81, 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  9. Omens JH, Covell JW. Transmural distribution of myocardial tissue growth induced by volume overload hypertrophy in the dog. Circulation 1991; 84, 1235–1245.

    Article  PubMed  CAS  Google Scholar 

  10. Boucher CA, Pohost GM, Okada RD, Levine FH, Strauss HW, Warren Harthome J. Effect of ventricular pacing on left ventricular function assessed by radionuclide angiography. Am Heart J 1983; 106: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  11. Frais MA, Botvinick EH, Shosa DW, O’Connell WJ, Scheinman MM, Hattner RS, Morady F. Phase image analysis of ventricular contraction in left and right bundle branch block. Am J Cardiol 1982; 50: 95–105.

    Article  PubMed  CAS  Google Scholar 

  12. Prinzen FW, Cheriex EC, Arts T, Delhaas T, Reneman RS. Changes in ventricular diastolic wall thickness induced by chronic asynchronous electrical activation. J Mol Cell Cardiol 1992; 24 (Suppl. V): S.50.

    Article  Google Scholar 

  13. Jeanrenaud X, Goy JJ, Kappenberger L. Effects of dual-chamber pacing in hypertrophic obstructive cardiomyopathy. Lancet 1992; 339; 1318–1823.

    Article  PubMed  CAS  Google Scholar 

  14. Fananapazir L, Cannon RO, Tripodi DJ, Panza JA. Impact of dual-chamber permanent pacing in patients with obstructive cardiomyopathy with symptoms refractory to verapamil and beta-adrenergic blocker therapy. Circulation 1992; 85: 2149–2161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prinzen, F.W., Delhaas, T., Arts, T., Reneman, R.S. (1993). Asymmetrical Changes in Ventricular Wall Mass by Asynchronous Electrical Activation of the Heart. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics