Skip to main content

Endocardial Coronary Microcirculation of the Beating Heart

  • Chapter
Interactive Phenomena in the Cardiac System

Abstract

Direct and continuous observation of subendocardial (deep myocardial) microcirculation provides essential information on coronary circulation, since cardiac contraction affects subendocardial vessels most vigorously. To achieve this aim, we developed a portable needle-probe video-microscope with a charge-coupled-device (CCD) camera to visualize the subendocardial microcirculation. Images of the subendocardial microcirculation of a porcine beating heart were successfully observed in all cases. The vascular compression by cardiac contraction decreased the diameter of subendocardial arterioles and venules by about 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anrep GV, Cruickshank EWH, Downing AC, Subba Rau A. The coronary circulation in relation to the cardiac cycle. Heart 1927; 14: 111–133.

    Google Scholar 

  2. Wiggers CJ. The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow. Circ Res 1954; 2: 271–279.

    Article  PubMed  CAS  Google Scholar 

  3. Gregg DE, Fisher LG. Handbook of Physiology. In: Hamilton WF, Dow P, eds. American Physiological Society. Washington DC 1963; 1517–1584.

    Google Scholar 

  4. Kajiya F, Hiramatsu 0, Mito K, Tadaoka S, Ogasawara Y, Tsujioka K. Evaluation of coronary blood flow by fiber-optic laser Doppler velocimeter. In: Kajiya F, Klassen GA, Spaan JAE, Hoffman JIE, eds. Coronary Circulation, Basic mechanism and clinical relevance, Tokyo: Springer-Verlag 1990; 43–53.

    Chapter  Google Scholar 

  5. Scaramucci J. Theoremata familiaria viros eruditos consulentia de variis physico-medicis lucubrationibus juxta leges mecanicas: Apud Joannem Baptistam Bustum 1695; 70–81.

    Google Scholar 

  6. Ashikawa K, Kanatsuka H, Suzuki T, Takishima T. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 1986; 59: 704–711.

    Article  PubMed  CAS  Google Scholar 

  7. Nellis SH, Liedtke AJ, Whitesell L. Small coronary vessel pressure and diameter in an intact beating rabbit heart using fixed-position and free-motion techniques. Circ Res 1981; 48: 342–353.

    Article  Google Scholar 

  8. Tillmanns H, Ikeda S, Hansen H, Sarma JSM, Fauvel JM, Bing RJ. Microcirculation in the ventricle of the dog and turtle. Circ Res 1974; 34: 561–569.

    Article  PubMed  CAS  Google Scholar 

  9. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986; 251: H779–H788.

    PubMed  CAS  Google Scholar 

  10. Kajiya F, Goto M, Yada T, Kimura A, Yamamoto T, Hiramatsu 0, Ogasawara Y, Tsujioka K, Yamamori S, Hosaka S. In-vivo evaluation blood vessels by a new needle type CCD microscope (Abstract). Circulation 1991; 84: 11–271 (Suppl II).

    Google Scholar 

  11. Yada T, Kimura A, Yamamoto T, Hiramatsu 0, Goto M, Ogasawara Y, Tsujioka K, Kajiya F. Nitroglycerin dilates larger coronary venules both in epicardium and endocardium (Abstract). Circulation 1991; 84: 11–673 (Suppl II).

    Google Scholar 

  12. Kanatsuka H, Lamping KG, Eastham CL, Dellsperger KC, Marcus ML. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ Res 1989; 65: 1296–1305.

    Article  PubMed  CAS  Google Scholar 

  13. Nellis SH, Whitesell L. Phasic pressures and diameters in small epicardial veins of the unrestrained heart. Am J Physiol 1989; 257: H1056–H1061.

    PubMed  CAS  Google Scholar 

  14. Goto M, Flynn AE, Doucette JW, Jansen CMA, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JIE. Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol 1991; 261: H1417–H1429.

    PubMed  CAS  Google Scholar 

  15. Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large-and small-vessel intramyocardial blood volume. Circ Res 1991; 68: 217–225.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kajiya, F. et al. (1993). Endocardial Coronary Microcirculation of the Beating Heart. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics