Skip to main content

The use of Immortalized Mouse L1210/OAP Cells Established in Culture to Study the Major Class 1 Aldehyde Dehydrogenase-Catalyzed Oxidation of Aldehydes in Intact Cells

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

Abstract

NAD(P)-linked aldehyde dehydrogenases are a group of enzymes that catalyze the oxidation of a wide variety of aldehydes to their corresponding acids (Sladek et al., 1989; Goedde and Agarwal, 1990). Based on their primary structure, and/or subcellular distribution and kinetic, physical and immunological properties, these enzymes have been divided into three classes, viz., 1,2, and 3 (Lindahl and Hempel, 1991). The major class 2 enzyme has been studied quite extensively both in vivo and in cell-free experiments, in large part because of its importance in ethanol metabolism. More recently, class 3 aldehyde dehydrogenases have, because of their association with tumorigenesis, also been the subject of extensive investigation both in vivo and in cell-free experiments. In contrast, class 1 aldehyde dehydrogenases have not been as extensively studied, especially ex or in vivo. This is probably because their importance in catalyzing the oxidation of several biologically and/or pharmacologically important aldehydes, e.g., aldophosphamide, has only recently been recognized (Sladek et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. G., and Bloxham, D. P., 1989, The pharmacology and pharmacokinetics of the retinoids, Pharmac. Ther., 40: 1.

    Article  CAS  Google Scholar 

  • Beisswenger, T. B., Holmquist, B., and Vallee, B. L., 1985, χ-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: Implications and inferences, Froc. Natl. Acad. Sci., USA, 82: 8369.

    Article  CAS  Google Scholar 

  • Brien, J. F., and Loomis, C. W., 1985, Aldehyde dehydrogenase inhibitors as alcohol-sensitizing drugs: A pharmacological perspective, TIPS, 6: 477.

    CAS  Google Scholar 

  • Breitman, T. R., Selonick, S. E., and Collins, S. J., 1980, Induction of differentiation of the human promyelocytc leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci., USA, 77: 2936.

    Article  PubMed  CAS  Google Scholar 

  • Deitrich, R. D., and Hellerman, L., 1963, Diphosphopyridine nucleotide-linked aldehyde dehydrogenase: II. Inhibitors, J. Biol. Chem., 238: 1683.

    PubMed  CAS  Google Scholar 

  • Dockham, P. A., Lee, M.-O., and Sladek, N. E., 1992, Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde, Biochem. Pharm., 43: 2453.

    Article  PubMed  CAS  Google Scholar 

  • Duester, G., 1991, A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step, Alcoholism: Clin. Exp. Res., 15: 568.

    Article  CAS  Google Scholar 

  • Edwards, R. B., Adler, A. J., Dev, S., and Claycomb, R. C., 1992, Synthesis of retinoic acid from retinol by cultured rabbit Müller cells, Exp. Eye Res., 54: 481.

    Article  PubMed  CAS  Google Scholar 

  • Fidge, N. H., and Goodman, D. S., 1968, The enzymatic reduction of retinal to retinol, J. Biol. Chem., 243: 4372.

    PubMed  CAS  Google Scholar 

  • Frolik, C. A., 1984, Metabolism of retinoids, in “The Retinoids,” Vol. 2, M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds., Academic Press, Orlando, p. 177.

    Google Scholar 

  • Gaur, V. P., De Leeuw, A. H., Milam, A. H., and Sarri, J. C., 1990, Localization of cellular retinoic acidbinding protein to amacrine cells of rat retina, Exp. Eye Res., 50: 505.

    Article  PubMed  CAS  Google Scholar 

  • Goedde, H. W., and Agarwal, D. P., 1990, Pharmacogenetics of aldehyde dehydrogenase (ALDH), Pharmac. Ther., 45: 345.

    Article  CAS  Google Scholar 

  • Julià, P., Farrès, J., and Rapès, X., 1986, Ocular alcohol dehydrogenase in the rat: Regional distribution and kinetics of the ADH-1 isozyme with retinol and retinal, Exp. Eye Res., 42: 305.

    Article  PubMed  Google Scholar 

  • Kakkad, B. P., and Ong, D. E., 1988, Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine, J. Biol. Chem., 263: 1 2916.

    Google Scholar 

  • Kim, C.-I., Leo, M. A., and Lieber, C. S., 1992, Retinol forms retinoic acid via retinal, Arch. Biochem. Biophys., 294: 388.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, F. R., Landkamer, G. J., Manthey, G L., Ramsay, N. K. C., and Sladek, N. E., 1987, Effect of aldehyde dehydrogenase inhibitors on the ex vivo sensitivity of human multipotent and committed hematopoietic progenitor cells and malignant blood cells to oxazaphosphorines, Cancer Res., 47: 3180.

    PubMed  CAS  Google Scholar 

  • Lakshman, M. R., Mychkovsky, I., and Attlesey, M., 1989, Enzymatic conversion of all-trans-β-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa, Proc. Natl. Acad. Sci., USA, 86: 9124.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 226: 680.

    Article  Google Scholar 

  • Lee, M.-O., Manthey, C. L., and Sladek, N. E., 1991, Identification of mouse liver aldehyde dehydrogenases that catalyze the oxidation of retinaldehyde to retinoic acid, Biochem. Pharm., 42: 1279.

    Article  PubMed  CAS  Google Scholar 

  • Leo, M. A., Kim, G-I., and Lieber, C. S., 1987, NAD+-dependent retinol dehydrogenase in liver microsomes, Arch. Biochem. Biophys., 259: 241.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, R., and Hempel, J., 1991, Aldehyde dehydrogenase: What can be learned from a baker’s dozen sequences?, Adv. Exp. Med. Biol., 284: 1.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, R., 1980, Effects of vitamin A acid and its analogs (retinoids) on normal and neoplastic cells, Biochim. Biophys. Acta, 605: 33.

    PubMed  CAS  Google Scholar 

  • Maki, P. A., and Sladek, N. E., 1991, Potentiation of the cytotoxic action of mafosfamide by N-isopropyl-p-formylbenzamide, Cancer Res., 51: 4170.

    PubMed  CAS  Google Scholar 

  • Manthey, C. L., 1988, Resolution and characterization of the aldehyde dehydrogenases important in cyclophosphamide metabolism, Ph.D. Dissertation, University of Minnesota, Minneapolis.

    Google Scholar 

  • Manthey, C. L., Landkamer, G. J., and Sladek, N. E., 1990, Identification of the mouse aldehyde dehydrogenases important in aldophosphamide detoxification, Cancer Res., 50: 4991.

    PubMed  CAS  Google Scholar 

  • Mezey, E., and Holt, P., 1971, The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina, Exp. Mol. Path., 15: 148.

    Article  CAS  Google Scholar 

  • Milam, A. H., De Leeuw, A. M., Gaur, V. P., and Sairi, J. C., 1990, Immunolocalization of cellular retinoic acid-binding protein to Müller cells and/or a subpopulation of GABA-positive amacrine cells, J. Comp. Neurol., 296: 123.

    Article  PubMed  CAS  Google Scholar 

  • Olson, J. A., 1967, The metabolism of vitamin A, Pharmacol. Rev., 19: 559.

    PubMed  CAS  Google Scholar 

  • Olson, J. A., 1989, Provitamin A function of carotenoids: The conversion of β-carotene into vitamin A, J. Nutr., 119: 105.

    PubMed  CAS  Google Scholar 

  • Petrash, J. M., Delucas, L. J., Bowling E., and Egen, N., 1991, Resolving isoforms of aldose reductase by preparative isoelectric focusing in the rotofor, Electrophoresis, 12: 84.

    Article  PubMed  CAS  Google Scholar 

  • Quick, T. C., and Ong, D. E., 1990, Vitamin A metabolism in the human intestinal Caco-2 cell line, Biochemistry, 29: 1 1116.

    Google Scholar 

  • Sambrook, J., Fritsh, E. F., and Maniatis, T., 1989, Transfer of proteins from SDS-polyacrylamide gels to solid supports: Immunological detection of immobilized proteins (western blotting), in “Molecular Cloning: A Laboratory Manual,” Vol. 3, C. Nolan, ed., Cold Spring Harbor Laboratory Press, Plainview, p. 18. 60.

    Google Scholar 

  • Sladek, N. E., and Landkamer, G. J., 1985, Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and cross-linking agent-resistant P388 cell lines, Cancer Res., 45: 1549.

    PubMed  CAS  Google Scholar 

  • Sladek, N.E., 1988, Metabolism of oxazaphosphorines, Pharmac. Ther., 37: 301.

    Article  CAS  Google Scholar 

  • Sladek, N. E., Manthey, C. L., Maki, P. A., Zhang, Z., and Landkamer, G. J., 1989, Xenobiotic oxidation catalyzed by aldehyde dehydrogenases, Drug Metab. Rev., 20: 697.

    Article  PubMed  CAS  Google Scholar 

  • Vallari, R. C., and Pietruszko, R., 1981, Kinetic mechanism of the human cytoplasmic aldehyde dehydrogenase El, Arch. Biochem. Biophys., 212: 9.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, B. L., and Bazzone, T. J., 1983, Isozymes of human liver alcohol dehydrogenase, in “Isozymes: Current Topics in Biological and Medical Research,” Vol. 8, M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds., Alan R. Liss, New York, p. 219.

    Google Scholar 

  • Vander Jagt, D. L., Hunsaker, L. A., Robinson, B., Stangebye, L. A., and Deck, L. M., 1990, Aldehyde and aldose reductases from human placenta: Heterogeneous expression of multiple enzyme forms, J. Biol. Chem., 265: 10912.

    Google Scholar 

  • Williams, J. B., and Napoli, J. L., 1985, Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells, Proc. Natl Acad. Sci., USA, 82: 4658.

    Article  PubMed  CAS  Google Scholar 

  • Wohlhueter, R. M., and Plagemann, P. G., 1989, Measurement of transport versus metabolism in cultured cells, in “Methods in Enzymology,” Vol. 173, S. L. Berger and A. R. Kimmel, eds., Academic Press, Orlando, p. 714.

    Google Scholar 

  • Zachman, R. D., and Olson, J. A., 1961, A comparison of retinen reductase and alcohol dehydrogenase of rat liver, J. Biol. Chem., 236: 2309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sladek, N.E., Lee, MO. (1993). The use of Immortalized Mouse L1210/OAP Cells Established in Culture to Study the Major Class 1 Aldehyde Dehydrogenase-Catalyzed Oxidation of Aldehydes in Intact Cells. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics