Skip to main content

Kinetic Alteration of Human Aldose Reductase by Mutagenesis of Cysteine Residues

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

Abstract

Aldose reductase (ALR21: alditol:NADPH oxidoreductase: E.C. 1.1.1.21) catalyzes the NADPH-linked reduction of aldoses to their corresponding alcohols or polyols, the first step of the polyol pathway. Enhanced flux of glucose through the polyol pathway and consequent biochemical imbalances are thought to be crucial to the onset and progression of many complications of diabetes mellitus including cataract, retinopathy, neuropathy and nephropathy (Kinoshita and Nishimura, 1988). In light of its rate-limiting position in the polyol pathway as well as its apparent metabolic dispensability (Yancey et al., 1990), strategies to control or prevent the onset of diabetic complications through inhibition of aldose reductase are being aggressively pursued. While a structurally-diverse array of aldose reductase inhibitors (ARI) have yielded impressive results in animal studies, their effectiveness in arresting or preventing diabetic neuropathy (Boulton et al., 1990) and retinopathy (Sorbinil Retinopathy Trial Research Group, 1990) in human trials has been less encouraging (Frank, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bhatnagar, A., Liu, S., Das, B., Srivastava, S.K., 1989, Involvement of sulfhydryl residues in aldose reductase-inhibitor interaction. Mol. Pharmacol. 36, 825–830.

    PubMed  CAS  Google Scholar 

  • Bohren, K.M., Page, J.L., Shankar, R., Henry, S.P., and Gabbay, K.H., 1992, Expression of human aldose and aldehyde reductases: Site-directed mutagenesis of a critical lysine 262. J. Biol Chem. 266, 24031–24037.

    Google Scholar 

  • Borhani, D.W., Harter, T.M., and Petrash, J.M., 1992, The crystal structure of the aldose reductase-NADPH binary complex. J. Biol Chem. (submitted).

    Google Scholar 

  • Boulton, A.J.M., Levin, S., and Comstock, J., 1990, A multicentre trial of the aldose-reductase inhibitor, tolrestat, in patients with symptomatic diabetic neuropathy. Diabetologia, 33: 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye-binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Carper, D.A., Old, S.E., Sato, S. and Kador, P.F., 1991, Characterization of recombinant human placenta and rat lens aldose reductase expressed in Escherichia coli. ARVO abstracts. Supplement to Invest. Ophthal. Vis. Sci., 1991, p. 975, J.B. Lippincott, Philadelphia.

    Google Scholar 

  • Cleland, W.W., 1979, Stastical analysis of enzyme kinetic data. Methods Enzymol. 63, 103–138.

    Article  PubMed  CAS  Google Scholar 

  • Das, B. and Srivastava, S.K., 1985, Activation of aldose reductase from human tissue. Diabetes 34, 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  • Del Corso, A., Camici, M. and Mura, U., 1987, In vitro modification of bovine lens aldose reductase activity. Biochem. Biophys. Res. Commun. 148: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Del Corso, A., Barsacchi, D., Camici, M., Garland, D., and Mura, U. 1989a, Bovine lens aldose reductase: Identification of two enzyme forms. Arch. Biochem. Biophys. 270: 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Del Corso, A., Barsacchi, D., Giannessi, M., Tozzi, M.G., Camici, M., and Mura, U., 1989b, Change in stereospecificity of bovine lens aldose reductase modified by oxidative stress. J. Biol Chem. 264, 17653–17655.

    PubMed  CAS  Google Scholar 

  • Del Corso, A., Barsacchi, D., Giannessi, M., Tozzi, M.G., Camici, M., Houben, J.L., Zandomeneghi, M., and Mura, U., 1990, Bovine lens aldose reductase: Tight binding of the pyridine coenzyme. Arch. Biochem. Biophys. 283: 512–518.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, T.G., 1982, Aldehyde reductases: Monomeric NADPH-depencent oxidoreductases with multifunctional potential. Biochem. Pharmacol. 31, 2705–2712.

    Article  PubMed  CAS  Google Scholar 

  • Frank, R.N., 1990, Aldose reductase inhibition: The chemical key to the control of diabetic retinopathy? (editorial) Arch. Ophthal. 108, 1229–1231.

    Article  PubMed  CAS  Google Scholar 

  • Graham, A., Hedge, P.J., Powell, S.J., Riley, J., Brown, L., Gammack, A., Carey, F., and Markham, A.F., 1989, Nucleotide sequence of cDNA for human aldose reductase. Nucl. Acids Res. 17, 8368.

    Article  PubMed  CAS  Google Scholar 

  • Grundmann, Ulrich, Bohn, H., Obermeier, R., and Amann, E., 1990, Cloning and prokaryotic expression of a biologically active human placental aldose reductase. DNA and Cell Biol. 9, 149–157.

    Article  CAS  Google Scholar 

  • Jones, T.A., 1978, A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272.

    Article  CAS  Google Scholar 

  • Kador, P.F., Kinoshita, J.H., Tung, W.H., and Chylack, L.T., Jr., 1980, Differences in the susceptibility of various aldose reductases to inhibition. Invest. Ophthal. Vis. Sci. 19: 980–982

    PubMed  CAS  Google Scholar 

  • Kinoshita, J.H. and Nishimura, C., 1988, The involvement of aldose reductase in diabetic complications. Diabetes/Metabolism Reviews, 4: 323–337.

    Article  PubMed  CAS  Google Scholar 

  • Kubiseski, T.J., Hyndman, DJ., Morjana, N.A., Flynn, T.G., 1992, Studies on pig muscle aldose reductase: Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. J. Biol. Chem. 267, 6510–6517.

    PubMed  CAS  Google Scholar 

  • Kunkel, T.A., Roberts, J.D. and Zakour, R.A., 1987, Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Bhatnagar, A., Das, B., and Srivastava, S.K., 1989, Functional cysteinyl residues in human placental aldose reductase, Arch. Biochem. Biophys. 275: 112–121.

    Article  PubMed  CAS  Google Scholar 

  • Morjana, N.A. and Flynn, T.G., 1989, Aldose reductase from psoas muscle: Purification, substrate specificity, immunological characterization, and effect of drugs and inhibitors, J. Biol. Chem. 264, 2906–2911.

    PubMed  CAS  Google Scholar 

  • Mylari, B.L., Larson, E.R., Beyer, T.A., Zembrowski, W.J., Aldinger, C.E., Dee, M.F., Siegel, T.W., and Singleton, D.H., 1991, Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazine-acetic acid (Zopolrestat) and congeners, J. Med. Chem. 34, 108–122.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, C., Matsuura, Y., Kokai, Y. Akera, T., Carper, D., Morjana, N., Lyons, C., and Flynn, T.G., 1990, Cloning and expression of human aldose reductase. J. Biol. Chem. 265, 9788–9792.

    CAS  Google Scholar 

  • Olins, P.O. and Rangwala, S.H., 1990, Vector for enhanced translation of foreign genes in Escherichia coli. Methods Enzymol. 185, 115–119.

    CAS  Google Scholar 

  • Petrash, J.M., Harter, T.M., Devine, C., Olins, P., Bhatnagar, A., Liu, S., and Srivastava, S.K., 1992, Involvement of cysteine residues in catalysis and inhibition of human aldose reductase: Site-directed mutagenesis of cys-80, -298 and -303. J. Biol. Chem. (submitted).

    Google Scholar 

  • Petrash, J.M. and Favello, A.D., 1989, Isolation and characterization of cDNA clones encoding aldose reductase. Curr. Eye Res. 8, 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Plapp, B.V., Ganzhorn, A.J., Gould, R.M., Green, D.W., Warth, J.T., and Kratzer, D.A., 1991, Catalysis by yeast alcohol dehydrogenase. Adv. Exp. Med. Biol. 284, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Poulsom, R., 1987, Comparison of aldose reductase inhibitors in vitro: Effects of enzyme purification and substrate type. Biochem. Pharm. 36, 1577–1581.

    Article  PubMed  CAS  Google Scholar 

  • Rondeau, J.-M., Tête-Favier, F., Podjarny, A., Reymann, J.-M., Barth, P., Biellmann, J.-F., and Moras, D., 1992, Novel NADPH-binding domain revealed by the crystal struture of aldose reductase. Nature 355: 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Schade, S.Z., Early, S.L., Williams, T.R., Kezdy, F.J., Heinrikson, R.L., Grimshaw, C.E. and Doughty, C.C., 1990, Sequence analysis of bovine lens aldose reductase. J. Biol. Chem. 265, 3628–3635.

    PubMed  CAS  Google Scholar 

  • Sorbinil Retinopathy Trial Research Group, 1990, A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch. Ophthalmol. 108, 1234–1244.

    Article  Google Scholar 

  • Srivastava, S.K., Ansari, N.H., Hair, G.A., Jaspan, J., Rao, M.B., and Das, B., 1986, Hyperglycemia-induced activation of human erythrocyte aldose reductase and alteration in kinetic properties. Biochim. Biophys. Acta 870: 302–311.

    Article  PubMed  CAS  Google Scholar 

  • Sussman, J.L., Holbrook, S.R., Church, G.M., Kim, S.-H., 1977, A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst. A23, 800–804.

    Google Scholar 

  • Tronrud, D.E., Ten Eyck, L.F., Matthews, B.W., 1987, An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Cryst. A43, 489–501.

    Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K., and Hunsaker, L. A., 1990, Aldose reductase from human skeletal and heart muscle: Interconvertible forms related by thiol-disulfide exchange. J. Biol. Chem. 265: 20982–20987.

    Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K., and L. Hunsaker, 1992, Reduction of trioses by NADPH-dependent aldo-keto reductases: Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem. 267, 4364–4369.

    Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H., and Quiocho, F.A., 1992, An unlikely sugar substrate site in the 1.65Ã… structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Yancey, P.H., Haner, R.G., and Freudenberger, T.H., 1990, Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla. Am. J. Physiol. 259, F733–F738.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petrash, J.M., Harter, T., Tarle, I., Borhani, D. (1993). Kinetic Alteration of Human Aldose Reductase by Mutagenesis of Cysteine Residues. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics