Skip to main content

Recent Advances in Correlation Studies of Spatial Patterns of Genetic Variation

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 27))

Abstract

The spatial distribution of genetic variation has long been recognized as an important feature of population genetics. Our understanding of the basic spatial-temporal dynamics of genetic variation in populations continues to improve through theoretical and experimental studies. Dating back to the original work of Wright (1943) and Malécot (1948), theoretical work has indicated that spatial distributions of genetic variation should often differ strongly from random or uniform distributions. Nonrandomness, or spatial structuring, can strongly influence, and be strongly influenced by, many other important aspects of population genetics, including mating system, individual fitness, inbreeding depression, and the action of various other forms of natural selection, including environmental selection (e.g., Sokal, 1979; Epperson, 1990a). A large body of experimental studies of spatial structure of genetic variation confirms the theoretical predictions. Extensive reviews include those by Endler (1977), Bradshaw (1984), Nagylaki (1986), and Slatkin (1985, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W., 1975, The mating system and micro-evolution, Genetics 79:115–126.

    PubMed  Google Scholar 

  • Argyres, A. Z., and Schmitt, J., 1991, Microgeographical genetic structure of morphological and life history traits in a natural population of Impatiens capensis, Evolution 45:178–189.

    Google Scholar 

  • Aroian, L. A., 1985, Time series in m dimensions: Past, present and future, in: Time Series Analysis: Theory and Practice 6 (O. D. Anderson, J. K. Ord, and E. A. Robertson, eds.), pp. 241–261, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Barbujani, G., 1987, Autocorrelation of gene frequencies under isolation by distance, Genetics 117:777–782.

    PubMed  CAS  Google Scholar 

  • Bartlett, M. S., 1971, Physical nearest-neighbor models and non-linear time-series, J. Appl. Prob. 8:222–232.

    Article  Google Scholar 

  • Bennett, R. J., 1979, Spatial Time Series, Pion, London.

    Google Scholar 

  • Bennett, R. J., Haining, R. P., and Wilson, A. G., 1985, Spatial structure, spatial interaction, and their integration: A review of alternative models, Environ. Planning A 17:625–645.

    Article  Google Scholar 

  • Bodmer, W. F., 1960, Discrete stochastic processes in population genetics, J. R. Stat. Soc. B 22:218–236.

    Google Scholar 

  • Bodmer, W. F., and Cavalli-Sforza, L. L., 1968, A migration matrix model for the study of random genetic drift, Genetics 59:565–592.

    PubMed  CAS  Google Scholar 

  • Box, G. E. P., and Jenkins, G. M., 1976, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.

    Google Scholar 

  • Bradshaw, A. D., 1984, Ecological significance of genetic variation between populations, in: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds.), pp. 213–228, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Brown, A. H. D., and Albrecht, L., 1980, Variable outcrossing and the genetic structure of predominantly self-pollinated species, J. Theor. Biol. 82:591–606.

    Article  PubMed  CAS  Google Scholar 

  • Brown, B. A., and Clegg, M. T., 1984, Influence of flower color polymorphism on genetic transmission in a natural population of the common morning glory, Ipomoea purpurea, Evolution 38:796–803.

    Google Scholar 

  • Campbell, D. R., and Dooley, J. L., 1992, The spatial scale of genetic differentiation in a hummingbird-pollinated plant: Comparison with models of isolation by distance, Am. Nat. 139:735–748.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L., and Feldman, M. W., 1990, Spatial subdivision of populations and estimates of genetic variation, Theor. Popul. Biol. 37:3–25.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., and Charlesworth, B., 1990, Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate, Evolution 44:870–888.

    Article  Google Scholar 

  • Cliff, A. D., and Ord, J. K., 1981, Spatial Processes, Pion, London.

    Google Scholar 

  • Dewey, S. E., and Heywood, J. S., 1988, Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes, Evolution 42:834–838.

    Article  Google Scholar 

  • Ellstrand, N. C., Torres, A. M., and Levin, D. A., 1978, Density and the rate of apparent outcrossing in Helianthus annus (Asteraceae), Syst. Bot. 3:403–407.

    Article  Google Scholar 

  • Endler, J. A., 1977, Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Ennos, R. A., and Clegg, M. T., 1982, Effect of population substructuring on estimates of outcrossing rate in plant populations, Heredity 48:283–292.

    Article  Google Scholar 

  • Epperson, B. K., 1983, Multilocus genetic structure of natural populations of lodgepole pine, Ph.D. dissertation, Department of Genetics, University of California, Davis.

    Google Scholar 

  • Epperson, B. K., 1990a, Spatial patterns of genetic variation within plant populations, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 229–253, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Epperson, B. K., 1990b, Spatial autocorrelation of genotypes under directional selection, Genetics 124:757–771.

    PubMed  CAS  Google Scholar 

  • Epperson, B. K., 1992, Spatial structure of genetic variation within populations of forest trees, New Forests 6:257–278.

    Article  Google Scholar 

  • Epperson, B. K., 1993, Spatial and space-time correlations in systems of subpopulations with genetic drift and migration, Genetics 133:711–727.

    PubMed  CAS  Google Scholar 

  • Epperson, B. K., (submitted), Spatial and space-time correlations in systems of subpopulations with stochastic migration, Theor. Popul. Biol., submitted.

    Google Scholar 

  • Epperson, B. K., and Allard, R. W., 1984, Allozyme analysis of the mating system in lodgepole pine populations, J. Hered. 75:212–214.

    Google Scholar 

  • Epperson, B. K., and Allard, R. W., 1987, Linkage disequilibrium between allozymes in natural populations of lodgepole pine, Genetics 115:341–352.

    PubMed  CAS  Google Scholar 

  • Epperson, B. K., and Allard, R. W., 1989, Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine, Genetics 121:369–377.

    PubMed  CAS  Google Scholar 

  • Epperson, B. K., and Clegg, M. T., 1986, Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea), Am. Nat. 128:840–858.

    Article  Google Scholar 

  • Epperson, B. K., and Clegg, M. T., 1987, Frequency-dependent variation for outcrossing rate among flower color morphs of Ipomoea purpurea, Evolution 41:1302–1311.

    Google Scholar 

  • Feldman, M. W., and Christiansen, F. B., 1975, The effect of population subdivision on two loci without selection, Genet. Res. 24:151–167.

    Article  Google Scholar 

  • Felsenstein, J., 1975, A pain in the torus: Some difficulties with models of isolation by distance, Am. Nat. 109:359–368.

    Article  Google Scholar 

  • Fenster, C. B., 1991, Gene flow in Chamaecrista fasciculata. II. Gene establishment, Evolution 45:410–422.

    Article  Google Scholar 

  • Fisher, R. A., and Ford, E. B., 1947, The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L., Heredity 1:143–174.

    Article  Google Scholar 

  • Fix, A. G., 1975, Fission-fusion and lineal effect: Aspects of the population structure of the Semai Senoi of Malaysia, Am. J. Phys. Anthropol. 43:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Fix, A. G., 1978, The role of kin-structured migration in genetic microdifferentiation, Ann. Hum. Genet. 41:329–339.

    Article  PubMed  CAS  Google Scholar 

  • Fix, A. G., 1993, Kin-structured migration and isolation by distance, Hum. Biol. 65:193–210.

    PubMed  CAS  Google Scholar 

  • Fleming, W. H., and Su, C.-H., 1974, Some one-dimensional migration models in population genetics theory, Theor. Popul. Biol. 5:431–449.

    Article  PubMed  CAS  Google Scholar 

  • Haining, R. P., 1977, Model specification in stationary random fields, Geogr. Anal. 9:107–109.

    Article  Google Scholar 

  • Haining, R. P., 1978, The moving average model for spatial interaction, Trans. Inst. Br. Geogr. 3:202–225.

    Article  Google Scholar 

  • Haining, R. P., 1979, Statistical test and process generators for random field models, Geogr. Anal. 11:45–64.

    Article  Google Scholar 

  • Hamrick, J. L., and Godt, M. J. W., 1990, Allozyme diversity in plant species, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 43–63, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Harpending, H. C., 1973, Discussion of relationship of conditional kinship to a priori kinship, following paper by N. E. Morton, in: Genetic Structure of Populations (N. E. Morton, ed.), pp. 78–79, University of Hawaii Press, Honolulu.

    Google Scholar 

  • Heywood, J. S., 1991, Spatial analysis of genetic variation in plant populations, Annu. Rev. Ecol. Syst. 22:335–355.

    Article  Google Scholar 

  • Holsinger, K. E., 1988, Inbreeding depression doesn’t matter: The genetic basis of mating system evolution, Evolution 42:1235–1244.

    Article  Google Scholar 

  • Hooper, P. M., and Hewings, G. J. D., 1981, Some properties of space-time processes, Geogr. Anal. 13:203–223.

    Article  Google Scholar 

  • Imaizumi, Y., Morton, N. E., and Harris, D. E., 1970, Isolation by distance in artificial populations, Genetics 66:569–582.

    PubMed  CAS  Google Scholar 

  • Jacquard, A., 1973, A distance between individuals whose genealogies are known, in: Genetic Structure of Populations (N. E. Morton, ed.), pp. 82–86, University of Hawaii Press, Honolulu.

    Google Scholar 

  • Kimura, M., 1953, “Stepping stone” model of population, Annu. Rep. Nat. Inst. Genet. Jpn. 3:62–63.

    Google Scholar 

  • Kimura, M., and Weiss, G. H., 1964, The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics 49:561–576.

    PubMed  CAS  Google Scholar 

  • Knowles, P., 1990, Spatial genetic structure within two natural stands of black spruce [Picea mariana (Mill) B. S. P.], Silvae Genet. 40:13–19.

    Google Scholar 

  • Krishna-Iyer, P. V., 1949, The first and second moments of some probability distributions arising from points on a lattice and their applications, Biometrika 36:135–141.

    Google Scholar 

  • Lande, R., 1991, Isolation by distance in a quantitative trait, Genetics 128:443–452.

    PubMed  CAS  Google Scholar 

  • Latter, B. D. H., and Sved, J. A., 1981, Migration and mutation in stochastic models of gene frequency change. II. Stochastic migration with a finite number of islands, J. Math. Biol. 13:95–104.

    Article  Google Scholar 

  • Levin, D. A., 1981, Dispersal versus gene flow in plants, Ann. Missouri Bot. Gard. 68:233–253.

    Article  Google Scholar 

  • Levin, D. A., and Fix, A. G., 1989, A model of kin-migration in plants, Theor. Appl. Genet. 77:332–336.

    Article  Google Scholar 

  • Lewontin, R. C., and Krakauer, J., 1973, Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195.

    PubMed  CAS  Google Scholar 

  • Malécot, G., 1948, Les mathématiques de l’hérédité, Masson, Paris.

    Google Scholar 

  • Malécot, G., 1967, Identical loci and relationship, Proc. 5th Berkeley Symp. Math. Stat. Prob. 4:317–332.

    Google Scholar 

  • Malécot, G., 1973, Isolation by distance, in: Genetic Structure of Populations (N. E. Morton, ed.), pp. 72–75, University of Hawaii Press, Honolulu.

    Google Scholar 

  • Mantel, N., 1967, The detection of disease clustering and a generalized regression approach, Cancer Res. 27:209–220.

    PubMed  CAS  Google Scholar 

  • Maruyama, T., 1969, Genetic correlations in the stepping stone model with non-symmetrical migration rates, J. Appl. Prob. 6:463–477.

    Article  Google Scholar 

  • Maruyama, T., 1971, Analysis of population structure. II. Two dimensional stepping stone models of finite length and other geographically structured populations, Ann. Hum. Genet. 35:411–423.

    Article  Google Scholar 

  • Merzeau, D., DiGiusto, F., Comps, B., Thiebaut, B., Letouzey, J., and Cuguen, J., 1989, Genetic control of isozyme systems and heterogeneity of pollen contribution in Beech (Fagus sylvatica L.), Silvae Genet. 38:195–201.

    Google Scholar 

  • Morton, N. E., 1973a, Kinship and population structure, in: Genetic Structure of Populations (N. E. Morton, ed.), pp. 66–69, University of Hawaii Press, Honolulu.

    Google Scholar 

  • Morton, N. E., 1973b, Kinship bioassay, in: Genetic Structure of Populations (N. E. Morton, ed.), pp. 158–163, University of Hawaii Press, Honolulu.

    Google Scholar 

  • Morton, N. E., 1982, Estimation of demographic parameters from isolation by distance, Hum. Hered. 32:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1974, The decay of genetic variability in geographically structured populations, Proc. Natl. Acad. Sci. USA 71:2932–2936.

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1978, A diffusion model for geographically structured populations, J. Math. Biol. 9:101–114.

    Article  Google Scholar 

  • Nagylaki, T., 1986, Neutral models of geographical variation, in: Stochastic Spatial Processes (P. Tauta, ed.), pp. 216–237, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Nei, M., 1973, Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. USA 70:3321–3323.

    Article  PubMed  CAS  Google Scholar 

  • Oden, N. L., 1984, Assessing the significance of a spatial correlogram, Geogr. Anal. 16:1–16.

    Article  Google Scholar 

  • Oden, N. L., and Sokal, R. R., 1986, Directional autocorrelation: An extension of spatial correlograms to two dimensions, Syst. Zool. 35:608–617.

    Article  Google Scholar 

  • Perry, D. J., and Knowles, P., 1991, Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands, Heredity 66:137–142.

    Article  Google Scholar 

  • Pfeifer, P. E., and Deutsch, S. J., 1980, A three-stage iterative procedure of space-time modelling, Technometrics 22:35–47.

    Article  Google Scholar 

  • Price, M. V., and Waser, N. M., 1979, Pollen dispersal and optimal outcrossing in Delphinium nelsoni, Nature 277:294–297.

    Article  Google Scholar 

  • Prout, T., 1973, Appendix to Mitton, J. B., and Koehn, R. K., Population genetics of marine pelecypods. III. Epistasis between functionally related isozymes in Mytilas edulis, Genetics 73:487–496.

    Google Scholar 

  • Ritland, K., 1985, The genetic mating structure of subdivided populations. I. Open-mating model, Theor. Popul. Biol. 27:51–74.

    Article  Google Scholar 

  • Rogers, A. R., 1987, A model of kin-structured migration, Evolution 41:417–426.

    Article  Google Scholar 

  • Rogers, A. R., 1988, Three components of genetic drift in subdivided populations, Am. J. Phys. Anthropol. 77:435–449.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A. R., and Eriksson, A. W., 1988, Statistical analysis of the migration component of genetic drift, Am. J. Phys. Anthropol. 77:451–457.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A. R., and Harpending, H. C., 1986, Migration and genetic drift in human populations, Evolution 40:1312–1327.

    Article  Google Scholar 

  • Rohlf, F. J., and Schnell, G. D., 1971, An investigation of the isolation-by-distance model, Am. Nat. 105:295–324.

    Article  Google Scholar 

  • Sakai, K., 1985, Studies on breeding structure in two tropical tree species, in: Population Genetics in Forestry (H. R. Gregorius, ed.), pp. 212–225, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Sawyer, S., 1976, Results for the stepping stone models for migration in population genetics, Ann. Prob. 4:699–728.

    Article  Google Scholar 

  • Schaal, B. A., 1975, Population structure and local differentiation in Liatris cylindracea, Am. Nat. 109:511–528.

    Article  Google Scholar 

  • Schmitt, J., and Gamble, S. E., 1990, The effect of distance from the parental site on offspring performance and inbreeding depression in Impatiens capensis: A test of the local adaptation hypothesis, Evolution 44:2022–2030.

    Article  Google Scholar 

  • Schnabel, A., and Hamrick, J. L., 1990, Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae), Am. J. Bot. 77:1060–1069.

    Article  Google Scholar 

  • Schnabel, A., Lauschman, R. H., and Hamrick, J. L., 1991, Comparative genetic structure of two co-occurring tree species, Madura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae), Heredity 67:357–364.

    Article  Google Scholar 

  • Schoen, D. J., and Clegg, M. T., 1985, The influence of flower color on outcrossing rate and male reproductive success in Ipomoea purpurea, Evolution 39:1242–1249.

    Article  Google Scholar 

  • Schoen, D. J., and Latta, R. G., 1989, Spatial autocorrelation of genotypes in populations of Impatiens pallid and Impatiens capensis, Heredity 63:181–189.

    Article  Google Scholar 

  • Shaw, D. V., Kahler, A. L., and Allard, R. W., 1981, A multilocus estimator of mating system parameters in plant populations, Proc. Natl. Acad. Sci. USA 78:1298–1302.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin, M., 1985, Gene flow in natural populations, Annu. Rev. Ecol. Syst. 16:393–430.

    Article  Google Scholar 

  • Slatkin, M., 1987, Gene flow and the geographic structure of natural populations, Science 236:787–792.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin, M., and Arter, H. E., 1991a, Spatial autocorrelation methods in population genetics, Am. Nat. 138:499–517.

    Article  Google Scholar 

  • Slatkin, M., and Arter, H. E., 1991b, Reply to Sokal and Oden, Am. Nat. 138:522–523.

    Article  Google Scholar 

  • Slatkin, M., and Barton, N. H., 1989, A comparison of three indirect methods for estimating average levels of gene flow, Evolution 43:1349–1368.

    Article  Google Scholar 

  • Smouse, P. E., and Long, J. C., 1992, Matrix correlation analysis in anthropology and genetics, Yearb. Phys. Anthropol. 35:187–213.

    Article  Google Scholar 

  • Smouse, P. E., Long, J. C., and Sokal, R. R., 1986, Multiple regression and correlation extensions of the Mantel test of matrix correspondence, Syst. Zool. 35:627–632.

    Article  Google Scholar 

  • Sokal, R. R., 1979, Ecological parameters inferred from spatial correlograms, in: Contemporary Quantitative Ecology and Related Econometrics (G. P. Patil and M. L. Rosenzweig, eds.), pp. 167–196, International Cooperative, Fairland, Maryland.

    Google Scholar 

  • Sokal, R. R., 1988, Genetic, geographic, and linguistic distances in Europe, Proc. Natl. Acad. Sci. USA 85:1722–1726.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., and Jacquez, G. M., 1991, Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis, Evolution 45:152–168.

    Article  Google Scholar 

  • Sokal, R. R., and Menozzi, P., 1982, Spatial autocorrelations of HLA frequencies in Europe support demic diffusion of early farmers, Am. Nat. 119:1–17.

    Article  Google Scholar 

  • Sokal, R. R., and Oden, N. L., 1978a, Spatial autocorrelation in biology. 1. Methodology, Biol. J. Linn. Soc. 10:199–228.

    Article  Google Scholar 

  • Sokal, R. R., and Oden, N. L., 1978b, Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest, Biol. J. Linn. Soc. 10:229–249.

    Article  Google Scholar 

  • Sokal, R. R., and Oden, N. L., 1991, Spatial autocorrelation analysis as an inferential tool in population genetics, Am. Nat. 138:518–521.

    Article  Google Scholar 

  • Sokal, R. R., and Wartenberg, D. E., 1983, A test of spatial autocorrelation analysis using an isolation-by-distance model, Genetics 105:219–237.

    PubMed  CAS  Google Scholar 

  • Sokal, R. R., Smouse, P. E., and Neel, J. V., 1986, The genetic structure of a tribal population, the Yanomama Indians. XV. Patterns inferred by autocorrelation analysis, Genetics 114:259–287.

    PubMed  CAS  Google Scholar 

  • Sokal, R. R., Oden, N. L., and Barker, J. S. F., 1987, Spatial structure in Drosophila buzzatii populations: Simple and directional spatial autocorrelation, Am. Nat. 129:122–142.

    Article  Google Scholar 

  • Sokal, R. R., Harding, R. M., and Oden, N. L., 1989a, Spatial patterns of human gene frequencies in Europe, Am. J. Phys. Anthropol. 80:267–294.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., Jacquez, G. M., and Wooten, M. C., 1989b, Spatial autocorrelation analysis of migration and selection, Genetics 121:845–855.

    PubMed  CAS  Google Scholar 

  • Sorensen, F. C., and Miles, R. S., 1982, Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine and noble fir to 10 years of age, For. Sci. 28:283–292.

    Google Scholar 

  • Strauss, S. H., 1986, Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata, Genetics 113:115–134.

    CAS  Google Scholar 

  • Strauss, S. H., and Libby, W. J., 1987, Allozyme heterosis in radiata pine is poorly explained by overdominance, Am. Nat. 130:879–890.

    Article  Google Scholar 

  • Turner, M. E., Stephens, J. C., and Anderson, W. W., 1982, Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination, Proc. Natl. Acad. Sci. USA 79:203–207.

    Article  PubMed  CAS  Google Scholar 

  • Upton, G. J. G., and Fingleton, B., 1985, Spatial Data Analysis by Example, Vol. 1, Point Pattern and Quantitative Data, Wiley, New York.

    Google Scholar 

  • Uyenoyama, M. K., 1986, Inbreeding and the cost of meiosis: The evolution of selfing in populations practicing partial biparental inbreeding, Evolution 40:388–404.

    Article  Google Scholar 

  • Uyenoyama, M. K., and Waller, D. M., 1991, Coevolution of self-fertilization and inbreeding depression. I. Mutation-selection balance at one and two loci, Theor. Popul. Biol. 40:14–46.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D. B., Sun, Z.-X., Govindaraju, D. R., and Dancik, B. P., 1991, Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana-Pinus contorta sympatric region, Am. Nat. 138:156–170.

    Article  Google Scholar 

  • Waser, N. M., 1987, Spatial genetic heterogeneity in a population of the montane perennial plant Delphinium nelsonii, Heredity 58:249–256.

    Article  Google Scholar 

  • Waser, P. M., and Elliott, L. F., 1991, Dispersal and genetic structure in kangaroo rats, Evolution 45:935–943.

    Article  Google Scholar 

  • Waser, N. M., and Price, M. V., 1989, Optimal outcrossing in Ipomopsis aggregata: Seed set and offspring fitness, Evolution 43:1097–1109.

    Article  Google Scholar 

  • Weir, B. S., 1990, Genetic Data Analysis, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C., 1984, Estimating F-statistics for the analysis of population structure, Evolution 38:1358–1370.

    Article  Google Scholar 

  • Weiss, G. H., and Kimura, M., 1965, A mathematical analysis of the stepping stone model of genetic correlation, J. Appl. Prob. 2:129–149.

    Article  Google Scholar 

  • Whittle, P., 1954, On stationary processes in the plane, Biometrika 41:434–449.

    Google Scholar 

  • Wright, S., 1943, Isolation by distance, Genetics 28:114–138.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1946, Isolation by distance under diverse systems of mating, Genetics 31:39–59.

    Google Scholar 

  • Wright, S., 1951, The genetical structure of populations, Ann. Eugen. 15:323–354.

    Google Scholar 

  • Wright, S., 1965, The interpretation of population structure by F-statistics with special regard to systems of mating, Evolution 19:395–420.

    Article  Google Scholar 

  • Wright, S., 1978, Evolution and the Genetics of Populations, Vol. 4, Variability Within and Among Populations, University of Chicago Press, Chicago.

    Google Scholar 

  • Yasuda, N., 1968, An extension of Wahlund’s principle to evaluate mating type frequency, Am. J. Hum. Genet. 29:1–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Epperson, B.K. (1993). Recent Advances in Correlation Studies of Spatial Patterns of Genetic Variation. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2878-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2878-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6248-7

  • Online ISBN: 978-1-4615-2878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics