Skip to main content

Control of polyphenol oxidase activity using a catalytic mechanism

  • Chapter
Protein Structure-Function Relationships in Foods

Abstract

Polyphenol oxidase is one of the most deteriorative of enzymes, especially in tropical fruits, yet it is essential for color of brown tea, cocoa, coffee, raisins, some figs and prunes and plant protection. It is responsible for the unwanted black-spot formation in shrimp but is important for pigmentation of human skin. In this chapter the mechanism of action of polyphenol oxidase is discussed, including the reactions catalyzed, the kinetics with respect to the two substrates, O2 and phenol, substrate specificity and the intermediates in the reaction. Differences between monophenolase and diphenolase activities are shown mechanistically. Complete amino-acid sequences are available for polyphenol oxidases from humans and mice, Neurospora crassa (fungus), and Streptomyces glaucescens (fungus) and S. antibioticus (fungus). There is 86% strict homology in amino-acid sequence between S. glaucescens and S. antibioticus but only 24% between the Streptomyces enzymes and that from N. crassa. The human and mouse enzymes are 43% homologous; they are much larger than the fungal enzymes and have little homology with the fungal enzymes, except in the activesite histidine residues. There is also much homology between the polyphenol oxidases and hemocyanins around the active-site histidine reactions. Several methods of controlling polyphenol oxidase utilize pH, O2 exclusion, heating, ascorbic acid, sodium bisulfite, thiol compounds, kcat inactivation, competitive inhibitors and removal of phenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernan, V., Filpula, D., Herber, W., Bibb, M. and Katz, E. (1985) The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene 37: 101–110.

    Article  CAS  Google Scholar 

  • Bouchilloux, S., McMahill, P. and Mason, H.S. (1963) The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes. J. Biol. Chem. 238: 1699–1707.

    CAS  Google Scholar 

  • Cleland, W.W. (1963a) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67: 104–137.

    Article  CAS  Google Scholar 

  • Cleland, W.W. (1963b) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim. Biophys. Acta 67: 173–187.

    Article  CAS  Google Scholar 

  • Cleland, W.W. (1963c) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. Biophys. Acta 67: 188–196.

    Article  CAS  Google Scholar 

  • Dawson, C.R. and Magee, R.J. (1955) Plant tyrosinase (polyphenol oxidase). Methods Enzymol. 2: 817–827.

    Article  Google Scholar 

  • Dietler, C. and Lerch, K. (1982) Reaction inactivation of tyrosinase, in Oxidases and Related Redox Systems (eds T.E. King, H.S. Mason and M. Morrison), Proceedings of the Third International Symposium, 1979. Pergamon, Oxford, pp. 305–317.

    Google Scholar 

  • Duckworth, H.W. and Coleman, J.E. (1970) Physicochemical and kinetic properties of mushroom tyrosinase. J. Biol. Chem. 245: 1613–1625.

    CAS  Google Scholar 

  • Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.

    Article  CAS  Google Scholar 

  • Embs, R.J. and Markakis, P. (1965) The mechanism of sulfite inhibition of browning caused by polyphenol oxidase. J. Food Sci. 30: 753–758.

    Article  CAS  Google Scholar 

  • Enzyme Nomenclature (1979) Recommendations (1978) of the Nomenclature Committee of the International Union of Biochemistry. Academic Press, New York.

    Google Scholar 

  • Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M. and Huber, R. (1974) Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI. Eur.J. Biochem. 45: 513–524.

    Article  CAS  Google Scholar 

  • Finkle, B.J. (1964) Treatment of plant tissue to prevent browning. US Patent No. 3/126/287, 24 March.

    Google Scholar 

  • Finkle, B.J. and Nelson, R.F. (1963) Enzyme reactions with phenolic compounds: Effect of 0-methyl-transferase on a natural substrate of fruit polyphenoloxidase. Nature 197: 902–903.

    Article  CAS  Google Scholar 

  • Fling, M, Horowitz, N.H. and Heinemann, S.F. (1963) The isolation and properties of crystalline tyrosinase from Neurospora. J. Biol. Chem. 238: 2045–2053.

    CAS  Google Scholar 

  • Fry, D.C. and Strothkamp, K.G. (1983) Photoinactivation of Agaricus bisporus tyrosinase: Modification of the binuclear copper site. Biochemistry 22: 4949–4953.

    Article  CAS  Google Scholar 

  • Gaykema, W.P.J., Hol, W.G.J., Vereijken, N.M., Soeter, M.N., Bak, H.J., and Beintema, J.J. (1984) 3.2 Ã… Structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature 309: 23–29.

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh, A. and Whitaker, J.R. (1984) Effect of ascorbic acid, sodium bisulfite, and thiol compounds on mushroom polyphenol oxidase. J. Agric. Food Chem. 32: 1003–1009.

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh, A. and Whitaker, J.R. (1985) kcat inactivation of mushroom polyphenol oxidase. J. Mol. Catal. 32: 141–147.

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh, A., Osuga, D.T., Chen, A.O. and Whitaker, J.R. (1992) Effect of ascorbic acid and copper on proteins and other polymers, in The Bioorganic Chemistry of Enzymatic Catalysis: An Homage to Myron L. Bender, (eds V.T. D’Souza and J. Feder), CRC Press, Boca Raton, pp. 61–76.

    Google Scholar 

  • Himmelwright, R.S., Eickman, N.C., LuBien, C.D., Lerch, K. and Solomon, E.I. (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanin. J. Amer. Chem. Soc. 102: 7339–7344.

    Article  CAS  Google Scholar 

  • Hochstein, P. and Cohen, G. (1963) The cytotoxicity of melanin precursors. Ann. NY Acad. Sci. 160: 876–886.

    Google Scholar 

  • Huber, M. and Lerch, K. (1988) Identification of two histidines as copper ligands in Streptomyces glaucescens tyrosinase. Biochem. 27: 5610–5615.

    Article  CAS  Google Scholar 

  • Huber, M. Hinterman, G. and Lerch, K. (1985) Primary Structure of tyrosinase from Streptomyces glaucescens. Biochem. 24: 6038–6044.

    Article  CAS  Google Scholar 

  • Hunt, M.D., Eannetta, N.T., Yu, H., Newman, S.M. and Steffens, J.C. (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 21: 59–68.

    Article  CAS  Google Scholar 

  • Imanaga, Y. (1955) Autoxidation of L-ascorbic acid and imidazole nucleus. II. The decomposition products of imidazole derivatives present in the autoxidation mixture. J. Biochem. 42: 669–676.

    CAS  Google Scholar 

  • Jolley, Jr, R.L., Nelson, R.M. and Robb, D.A. (1969) The multiple forms of mushroom tyrosinase. J. Biol. Chem. 244: 3251–3257.

    CAS  Google Scholar 

  • Jolley, Jr, R.L., Evans, L.H., Makino, N. and Mason, H.S. (1974) Oxytyrosinase. J. Biol. Chem. 249: 335–345.

    CAS  Google Scholar 

  • Kwon, B.S., Haq, A.K., Pomerantz, S.H. and Halaban, R. (1987) Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl Acad. Sci. USA 84: 7473–7477.

    Article  CAS  Google Scholar 

  • Lerch, K. (1978) Amino-acid sequence of tyrosinase from Neurospora crassa. Proc. Natl Acad. Sci. USA 75: 3635–3639.

    Article  CAS  Google Scholar 

  • Lerch, K. (1981) Copper monooxygenases: tyrosinase and dopamine β-monooxygenase. Metal Ions Biol. Syst. 13: 143–186.

    CAS  Google Scholar 

  • Lerch, K. (1982) Primary structure of tyrosinase from Neurospora crassa. II. Complete amino-acid sequence and chemical structure of a tripeptide containing an unusual thioether. J. Biol. Chem. 257: 6414–6419.

    CAS  Google Scholar 

  • Lerch, K. (1983) Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Mol. Cell. Biochem. 52: 125–138.

    Article  CAS  Google Scholar 

  • Lerch, K. (1987) Monophenol monoxygenase from Neurospora crassa. Methods Enzymol. 142: 165–169.

    Article  CAS  Google Scholar 

  • Lerch, K. and Ettlinger, L. (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427–437.

    Article  CAS  Google Scholar 

  • Martell, A.E. and Smith, R.M. (1974). Critical Stability Constants, Vol. 1, Plenum Press, New York.

    Google Scholar 

  • Mason, H.S. (1965). Oxidases. Annu. Rev. Biochem. 34: 595–634.

    Article  CAS  Google Scholar 

  • Mason, H.S., Spencer, E. and Yamazaki, I. (1961) Identification by electron-spin resonance spectroscopy of the primary product of tyrosinase. Biochem. Biophys. Res. Commun. 4: 236–238.

    Article  CAS  Google Scholar 

  • McEvily, A.J., Iyengar, R. and Gross, A. (1991). Inhibition of Polyphenol Oxidase by Phenolic Compounds. The Fourth Chemical Congress of North America, 25–30 August 1991, Abstract

    Google Scholar 

  • Müller, G., Ruppert, S., Schmid, E. and Schütz, G. (1988) Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 7: 2723–2730.

    Google Scholar 

  • Pfiffer, E. and Lercn, K. (1981) Histidine at the active site of Neurospora tyrosinase. Biochemistry 20: 6029–6035.

    Article  Google Scholar 

  • Pomerantz, S.H. (1963) Separation, purification and properties of two tyrosinases from hamster melanoma. J. Biol. Chem. 238: 2351–2357.

    CAS  Google Scholar 

  • Rivas, N.J. and Whitaker, J.R. (1973) Purification and some properties of two polyphenol oxidases from Bartlett pears. Plant Physiol. 52: 501–507.

    Article  CAS  Google Scholar 

  • Sapers, G.M. and Hicks, K.B. (1989) Inhibition of enzymatic browning in fruits and vegetables, in Quality Factors of Fruits and Vegetables, (ed. J.J. Jen.) ACS Symposium Series 405, pp. 29–43.

    Google Scholar 

  • Schartau, W., Eyerie, F., Reisinger, P., Geisert, H., Storz, H. and Linzen, B. (1983) Hemocyanin in spiders. XIX. Complete amino-acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain. Hoppe-Seyler’s Z. Physiol. Chem. 364: 1383–1409.

    Article  CAS  Google Scholar 

  • Schneider, H.J., Drexel, R., Feldmaier, G. and Linzen. B. (1983) Hemocyanins in spiders, XVIII. Complete amino-acid sequence of subunit e from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z. Physiol Chem. 364: 1357–1381.

    Article  CAS  Google Scholar 

  • Schoot Uiterkamp, A.S.M. and Mason, H.S. (1973) Magnetic dipole-dipole coupled Cu(II) pairs in nitric-oxide-treated tyrosinase: A structural relationship between the active sites of tyrosinase and hemocyanin. Proc. Natl Acad. Sci. USA 70: 993–996.

    Article  CAS  Google Scholar 

  • Shahar, T., Henning, N., Gutfinger, T., Hareven, D. and Lifschitz, E. (1992) The tomato 66.3-kD polyphenoloxidase gene: molecular identification and developmental expression. The Plant Cell, 4: 135–147.

    CAS  Google Scholar 

  • Shibahara, S., Tomita, Y., Sakakura, T., Nager, C., Chaudhuri, B. and Müller, R. (1986) Cloning and expression of cDNA encoding mouse tyrosinase. Nucl. Acids Res. 14: 2413–2427.

    Article  CAS  Google Scholar 

  • Solomon, E.I. (1981) Binuclear copper active site. Hemocyanin, tyrosinase, and type 3 copper oxidases, in Copper Proteins, (ed. T.G. Spiro), Wiley, New York, pp. 41–108.

    Google Scholar 

  • Smith, R.M. and Martell, A.E. (1975) Critical Stability Constants, Vol. 3, Plenum Press, New York.

    Book  Google Scholar 

  • Sussman, A.S. (1961). A comparison of the properties of two forms of tyrosinase from Neurospora crassa. Arch. Biochem. Biophys. 95: 407–415.

    Article  CAS  Google Scholar 

  • Szent-Györgyi, A. and Vietorisz, K. (1931) Function and significance of polyphenol oxidase from potatoes. Biochem. S. 233: 236–239.

    Google Scholar 

  • Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. and Richardson, D.C. (1982) Determination and analysis of the 2Ã… structure of copper, zinc Superoxide dismutase. J. Mol. Biol. 160: 181–217.

    Article  CAS  Google Scholar 

  • Uchida, K. and Kawakishi, S. (1986) Oxidative degradation of β-cyclodextrin by an ascorbic acidcopper ion system. Agric. Biol. Chem. 50: 367–373.

    Article  CAS  Google Scholar 

  • Wilcox, D.E., Porras, A.G., Hwang, Y.T., Lerch, K., Winkler, M.E. and Solomon, E.I. (1985) Substrate analogue binding to the coupled dinuclear copper active site in tyrosinase. J. Amer. Chem. Soc. 107: 4015–4027.

    Article  CAS  Google Scholar 

  • Winkler, M.E., Lerch, K. and Solomon, E.I. (1981) Competitive inhibitor binding to the binuclear copper active site in tyrosinase. J. Amer. Chem. Soc. 103: 7001–7002.

    Article  CAS  Google Scholar 

  • Witkop, Jr, C.J. (1984) Inherited disorders of pigmentation, in Genodermatoses: Clinics in Dermatology, (ed. R.M. Goodman), J.B. Lippincot. Philadelphia, Vol. 2, pp. 70–134.

    Google Scholar 

  • Wong, T.C., Luh, B.S. and Whitaker, J.R. (1971a) Isolation and characterization of polyphenol oxidases of clingstone peach. Plant Physiol. 48: 19–123.

    Article  CAS  Google Scholar 

  • Wong, T.C., Luh, B.S. and Whitaker, J.R. (1971b) Effect of phloroglucinol and resorcinol on the clingstone peach polyphenol oxidase-catalyzed oxidation of 4-methylcatechol. Plant Physiol. 48: 24–30.

    Article  CAS  Google Scholar 

  • Yasunobu, K.T. (1959) Mode of action of tyrosinase, in Pigment Cell Biology, (ed. M. Gordon), Academic Press, New York, pp. 583–608.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osuga, D., Van Der Schaaf, A., Whitaker, J.R. (1994). Control of polyphenol oxidase activity using a catalytic mechanism. In: Yada, R.Y., Jackman, R.L., Smith, J.L. (eds) Protein Structure-Function Relationships in Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2670-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2670-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6147-3

  • Online ISBN: 978-1-4615-2670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics