Skip to main content

Genetics and Protein Engineering of Nisin

  • Chapter
Bacteriocins of Lactic Acid Bacteria

Abstract

Of the bacteriocins produced by lactic acid bacteria, nisin (Fig. 1) is the best-characterized representative. Nisin is a 34 amino acid Polypeptide (Gross & Morell, 1971) produced by a number of, usually atypical, Lactococcus lactis subsp. lactis strains (Hirsch, 1953; De Vos et al., 1993). Two natural variants of nisin are known, nisin A (Gross & Morell, 1971) and nisin Z (Mulders et al., 1991), which differ in a single amino acid residue at position 27 (aspartic acid in nisin A and histidine in nisin Z; Fig. 1). The structural genes for nisin A and nisin Z (nisA and nisZ, respectively) have been found to differ by a single mutation (see section 3.1). The two nisin variants appear to have the same biological activities, but nisin Z appears to have different diffusion properties from nisin A (De Vos et al., 1993). Nisin is the most prominent member of the group of bacteriocin-like peptides called lantibiotics (Schnell et al., 1988). Lantibiotics are ribosomally synthesized antimicrobial Polypeptides, produced by Gram-positive bacteria, which contain the thioether amino acids lanthionine and 3-methyl-lanthionine (see Jung (1991a, b) for recent reviews). On the basis of their different types of ring structures and their differences in molecular weights, they have been classified into the two subgroups, type A and type B, nisin being a type A lantibiotic. Other members of this group include subtilin (Gross & Kiltz, 1973) produced by Bacillus subtilis, epidermin (Allgaier et al., 1985, 1986) and Pep5 (Kellner et al., 1989), both produced by Staphylococcus epidermidis, and the L. lactis subsp. lactis bacteriocin lacticin 481 (see Chapter 7, this volume; Piard et al., 1992; 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allgaier, H., Jung, G., Werner, R. G., Schneider, U. & Zähner, H. (1985).Elucidation of the structure of epidermin, a ribosomally synthesized tetracyclic heterodetic Polypeptide antibiotic. Angew. Chem. Int. Ed. Engl., 24, 1051–1053.

    Article  Google Scholar 

  • Allgaier, H., Jung, G., Werner, R. G., Schneider, U. & Zähner, H. (1986).Epidermin: sequencing of a heterodet tetracyclic 21-peptide amide antibiotic. Eur. J. Biochem., 160, 9–22.

    Article  Google Scholar 

  • Argos, P., Landy, A., Abremski, K., Egan, J. B., Haggard-Ljungquist, E., Hoess, R. H., Kahn, M. L., Kalionis, B., Narayana, S. V. L., Pierson, L. S., Sternberg, N. & Leong, J. N. (1986).The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J., 5, 433–440.

    Google Scholar 

  • Augustin, J., Rosenstein, R., Wieland, B., Schneider, U., Schnell, N., Engelke, G., Entian, K.-D. & Götz, F. (1992).Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur. J. Biochem., 204, 1149–1154.

    Article  Google Scholar 

  • Banerjee, S. & Hansen, J. N. (1988).Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem., 263, 9508–9514.

    Google Scholar 

  • Benz, R., Jung, G. & Sahl, H.-G. (1991). Mechanism of channel-formation by lantibiotics in black lipid membranes. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 359–372.

    Google Scholar 

  • Blackburn, P., Polak, J., Gusik, S. & Rubino, S. D. (1989). Nisin compositions for use as enhanced, broad range bacteriocins. International patent application number PCT/US89/0265; international publication number WO89/12399.

    Google Scholar 

  • Bowman, C. M., Sidikara, J. & Nomura, M. (1971).Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nature, 48, 133–137.

    Google Scholar 

  • Bringel, F., Van Alstine, G. L. & Scott, J. R. (1991).A host factor absent from Lactococcus lactis subspecies lactis MG1363 is required for conjugative transposition. Mol. Microbiol., 5, 2983–2993.

    Article  Google Scholar 

  • Broadbent, J. R. & Kondo, J. K. (1991).Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol., 57, 517–524.

    Google Scholar 

  • Brown, D. P., Idler, K. B. & Katz, L. (1990).Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J. Bacteriol., 172, 1877–1888.

    Google Scholar 

  • Buchman, G. W. & Hansen, J. N. (1987).Modification of membrane sulfhydryl groups in bacteriostatic action of nitrite. Appl. Environ. Microbiol., 53, 79–82.

    Google Scholar 

  • Buchman, G. W., Banerjee, S. & Hansen, J. N. (1988).Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem., 263, 16260–16266.

    Google Scholar 

  • Caillaud, F. & Courvalin, P. (1987).Nucleotide sequence of the ends of the conjugative shuttle transposon Tnl545. Mol. Gen. Genet., 209, 110–115.

    Article  Google Scholar 

  • Campbell, A. & Botstein, D. (1983). Evolution of the lambdoid phages. In Lambda II, ed. R. W. Hendrix, J. W. Roberts, F. W. Stahl & R. A. Weisberg. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 365–380.

    Google Scholar 

  • Campbell, A., Berg, D. E., Botstein, D., Lederberg, M., Novick, R. P., Starlinger, P. & Szybalski, W. (1979).Nomenclature of transposable elements in prokaryotes. Gene, 5, 197–206.

    Article  Google Scholar 

  • Caparon, M. G. & Scott, J. R. (1989).Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell, 59, 1027–1034.

    Article  Google Scholar 

  • Chan, W. C., Bycroft, B. W., Lian, L.-Y. & Roberts, G. C. K. (1989).Isolation and characterization of two degradation products derived from the peptide antibiotic nisin. FEBS Letters, 252, 29–36.

    Article  Google Scholar 

  • Chan, W. C., Bycroft, B. W., Leyland, M. L., Lian, L.-Y., Yang, J. C. & Roberts, G. C. K. (1992).Sequence-specific resonance assignment and conformational analysis of subtilin by 2D NMR. FEBS Letters, 300, 56–62.

    Article  Google Scholar 

  • Chung, Y. J., Steen, M. T. & Hansen, J. N. (1992).The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an Operon that contains a homolog of the hemolysin B transport protein. J. Bacteriol., 174, 1417–1422.

    Google Scholar 

  • Clewell, D. B. & Gawron-Burke, C. (1986).Conjugative transposons and the dessimination of antibiotic resistance in streptococci. Annu. Rev. Microbiol., 40, 635–659.

    Article  Google Scholar 

  • Clewell, D. B., Flannagan, S. E., Ike, Y., Jones, J. M. & Gawron-Burke, C. (1988).Sequence analysis of termini of conjugative transposon Tn 916. J. Bacteriol., 170, 3046–3052.

    Google Scholar 

  • Davey, G. P. & Pearce, L. (1982). Production of diplococcin by Streptococcus cremoris and its transfer to nonproducing group N streptococci. In Microbiology, ed. S. Schlessinger, American Society for Microbiology, Washington D.C., pp. 221–224.

    Google Scholar 

  • Delves-Broughton, J. (1990).Nisin and its uses as a food preservative. Food Technol., 4, 100–117.

    Google Scholar 

  • De Vos, W. M. (1987).Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev., 46, 281–295.

    Google Scholar 

  • De Vos, W. M. (1993) Future prospects for research and application of nisin and other bacteriocins. In Bacteriocins of Lactic Acid Bacteria, ed. D. Hoover & L. Steenson. Academic Press, New York, pp. 249–265.

    Google Scholar 

  • De Vos, W. M., Jung, G. & Sahl, H.-G. (1991). Appendix: definitions and nomenclature of lantibiotics. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 457–464.

    Google Scholar 

  • De Vos, W. M., Mulders, J. W. M., Hugenholtz, J., Siezen, R. J. & Kuipers, O. P. (1993). Properties of nisin Z and the distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol. 59, 213–218.

    Google Scholar 

  • De Vuyst, L. & Vandamme, E. J. (1992).Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol., 138, 571–578.

    Article  Google Scholar 

  • De Vuyst, L., Contreras, B., Sablon, E., Bosman, F. & Vandamme, E. J. (1993) Expression of the structural prenisin gene (nisA) of a nisin A producing Lactococcus lactis subsp. lactis strain in Escherichia coli and isolation of prenisin. Submitted for publication.

    Google Scholar 

  • Dodd, H. M., Horn, N. & Gasson, M. J. (1990).Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol., 136, 555–566.

    Article  Google Scholar 

  • Donkersloot, J. A. & Thompson, J. (1990). Simultaneous loss of N5-(carboxyethyl)ornithine synthase, nisin production, and sucrose fermenting ability by Lactococcus lactis K1. J. Bacteriol., 172 4122–4126.

    Google Scholar 

  • Engelke, G., Gutochowski-Eckel, Z., Hammelman, M. & Entian, K.-D. (1992)Biosynthesis of the lantibiotic nisin: genomic organization and membrane location of the NisB protein. Appl. Environ. Microbiol., 58, 3730–3743.

    Google Scholar 

  • Fuchs, P. G., Zajdel, J. & Dobrzanski, W. T. (1975).Possible plasmid nature of the determinant for production of the antibiotic nisin in some strains of Streptococcus lactis. J. Gen. Microbiol., 88, 189–192.

    Article  Google Scholar 

  • Gao, F. H., Abee, T. & Konings, W. N. (1991).Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl. Environ. Microbiol., 57, 2164–2170.

    Google Scholar 

  • Gasson, M. J. (1984).Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712. FEMS Microbiol. Lett., 21, 7–10.

    Article  Google Scholar 

  • Gawron-Burke, C. & Clewell, D. B. (1982).A transposon in Streptococcus faecalis with fertility properties. Nature, 300, 281–284.

    Article  Google Scholar 

  • Gireesh, T., Davidson, B. E. & Hillier, A. J. (1992).Conjugal transfer in Lactococcus lactis of a 68-kilobase-pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol., 58, 1670–1676.

    Google Scholar 

  • Gonzalez, C. F. & Kunka, B. S. (1985).Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol., 49, 627–633.

    Google Scholar 

  • Goodman, M., Palmer, D. E., Mierke, D., Ro, S., Nunami, K., Wakamiya, T., Fukase, K., Horimoto, S., Kitazawa, M., Fujita, H., Kubo, A. & Shiba, T. (1991). Conformation of nisin and its fragments using synthesis, NMR and computer simulations. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 59–75.

    Google Scholar 

  • Graeffe, T., Rintala, H., Paulin, L. & Saris, P. (1991). A natural nisin variant. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 260–268.

    Google Scholar 

  • Grant, S. R., Lee, S. C., Kendall, K. & Cohen, S. N. (1989).Identification and characterization of a locus inhibiting extrachromosomal maintenance of the Streptomyces plasmid SLP1. Mol. Gen. Genet., 217, 324–331.

    Article  Google Scholar 

  • Gross, E. (1975) Subtilin and nisin: the chemistry and biology of peptides with alpha,beta-unsaturated amino acids. In Peptides: Chemistry, Structure and Biology, ed. R. Walter & J. Meienhofer. Ann Arbor Science Publishers, Ann Arbor, Mich., pp. 31–42.

    Google Scholar 

  • Gross, E. & Kiltz, H. (1973).The number and nature of α, β-unsaturated amino acids in subtilin. Biochem. Biophys. Res. Commun., 50, 559–565.

    Article  Google Scholar 

  • Gross, E. & Morell, J. L. (1971).The structure of nisin. J. Am. Chem. Soc., 93, 4634–4635.

    Article  Google Scholar 

  • Hansen, J. N. (1990). Structure, expression and evolution of the nisin gene locus in Lactococcus lactis. Program Abstr. 3rd Int. ASM Conference in Streptococcal Genetics. American Society for Microbiology, Washington, D.C., abstr. 15, p. 12.

    Google Scholar 

  • Hansen, J. N. (1993) The molecular biology of nisin and its structural analogs. In Bacteriocins of Lactic Acid Bacteria, ed. D. Hoover & L. Steenson. Academic Press, New York, pp. 93–120.

    Google Scholar 

  • Hansen, J. N., Chung, Y. J., Liu, W. & Steen, M. J. (1991). Biosynthesis and mechanism of action of nisin and subtilin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp.

    Google Scholar 

  • Higgins, C. F., Hiles, I. D., Salmond, G. P. C, Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W. & Hermodson, M. A. (1986).A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature, 323, 448–450.

    Article  Google Scholar 

  • Hirsch, A. (1953).The evolution of the lactic streptococci. J. Dairy Res., 20, 290–293.

    Google Scholar 

  • Hirsch, A. & Grinsted, E. (1951).The differentiation of the lactic streptococci and their antibiotics. J. Dairy Res., 18, 198–204.

    Article  Google Scholar 

  • Hoess, R. H., Foeller, C., Bidwell, K. & Landy, A. (1980).Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc. Natl. Acad. Sci. USA, 77, 2482–2486.

    Article  Google Scholar 

  • Horn, N., Swindell, S., Dodd, H. & Gasson, M. (1991).Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet., 228, 129–135.

    Article  Google Scholar 

  • Hurst, A. (1966).Biosynthesis of the antibiotic nisin by whole Streptococcus lactis organisms. J. Gen. Microbiol., 44, 209–220.

    Article  Google Scholar 

  • Hurst, A. & Kruse, H. (1970).The correlation between change in absorbancy, calcium uptake, and cell-bound nisin activity in Streptococcus lactis. Can. J. Microbiol., 16, 1205–1211.

    Article  Google Scholar 

  • Hurst, A. & Kruse, H. (1972).Effect of secondary metabolites on the organisms producing them: Effect of nisin on Streptococcus lactis and enterotoxin B on Staphylococcus aureus. Antimicrob. Agents Chemother., 1, 277–279.

    Article  Google Scholar 

  • Hurst, A. & Paterson, H. G. (1971).Observations on the conversion of an inactive precursor protein to the antibiotic nisin. Can. J. Microbiol., 17, 1379–1384.

    Article  Google Scholar 

  • Ingram, L. C. (1969).Synthesis of the antibiotic nisin: formation of lanthionine and β-methyl-lanthionine. Biochim. Biophys. Acta, 184, 216–219.

    Article  Google Scholar 

  • Ingram, L. C. (1970).A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. Acta, 224, 263–265.

    Article  Google Scholar 

  • Jung, G. (1991a). Lantibiotics: a survey. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 1–34.

    Google Scholar 

  • Jung, G. (1991b).Lantibiotica — ribosomal synthetisierte Polypeptidwirkstoffe mit Sulfidbrücken und α, β-didehydroaminosäuren. Angew. Chemie, 103, 1067–1218.

    Article  Google Scholar 

  • Kaletta, C. & Entian, K.-D. (1989).Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacterial, 171, 1597–1601.

    Google Scholar 

  • Kellner, J., Jung, G., Josten, M., Kaletta, C., Entian, K.-D. & Sahl, H.-G. (1989).Pep5, a new lantibiotic: structure elucidation and amino acid sequence of the propeptide. Angew. Chem. Int. Ed. Engl., 28, 616–619.

    Article  Google Scholar 

  • Klein, C., Kaletta, C., Schnell, N. & Entian, K.-D. (1992).Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol., 58, 132–142.

    Google Scholar 

  • Kordel, M. & Sahl, H.-G. (1986).Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptide Pep5 and nisin. FEMS Microbiol. Lett., 34, 139–144.

    Article  Google Scholar 

  • Kozak, W., Rajchert-Trzpil, M. & Dobrzanski, W. T. (1973).Lysogeny in lactic streptococci producing and not producing nisin. Appl. Microbiol., 25, 305–308.

    Google Scholar 

  • Kozak, W., Rajchert-Trzpil, M. & Dobrzanski, W. T. (1974).The effect of proflavin, ethidium bromide and elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. J. Gen. Microbiol., 83, 295–302.

    Article  Google Scholar 

  • Kuipers, O. P., Boot, H. J. & de Vos, W. M. (1991a).Improved site-directed mutagenesis method by PCR. Nucl. Acids Res., 19, 4558.

    Article  Google Scholar 

  • Kuipers, O. P., Yap, W. M. G. J., Rollema, H. S., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. (1991b). Expression of wild-type and mutant nisin genes in Lactococcus lactis. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 250–259.

    Google Scholar 

  • Kuipers, O. P., Rollema, H. S., Yap, W. M. G. J., Boot, H. J., Siezen, R. J. & de Vos, W. M. (1992). Engineering dehydrated residues in the antimicrobial peptide nisin. J. Biol. Chem. 267, 24340–24346.

    Google Scholar 

  • Kuipers, O. P. Beerthuyzen, M. M. Siezen, R. J. & de Vos, W. M. (1993)Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis and evidence for the involvement of expression of the nisA and nisI genes in product immunity. Eur. J. Biochem., 216, 281–291.

    Article  Google Scholar 

  • LeBlanc, D. J., Crow, V. L. & Lee, L. N. (1980). Plasmid mediated carbohydrate catabolic enzymes among strains of Streptococcus lactis. In Plasmids and Transposons, Environmental Effects and Maintenance Mechanisms, ed. C. Stuttard & K. R. Rozee. Academic Press, New York, pp. 31–41.

    Google Scholar 

  • Lian, L.-Y., Chang, W. C., Morley, S. D., Roberts, G. C. K., Bycroft, B. W. & Jackson, D. (1992).NMR studies of the solution structure of nisin A. Biochem. J., 283, 413–420.

    Google Scholar 

  • Mankovich, J. A., Hsu, C. & Konisky, J. (1986).DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and 1b. J. Bacteriol., 168, 228–236.

    Google Scholar 

  • Molitor, E. & Sahl, H.-G. (1991). Applications of nisin: a literature survey. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 434–439.

    Google Scholar 

  • Morris, S. L., Walsh, R. C. & Hansen, J. N. (1984).Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem., 259, 13590–13594.

    Google Scholar 

  • Mulders, J. W. M., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. & de Vos, W. M. (1991).Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem., 201, 581–584.

    Article  Google Scholar 

  • Murphy, E., Huwyler, L. & Bastos, M. C. F. (1985).Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J., 4, 3357–3365.

    Google Scholar 

  • Murphy, M. C., Steele, J. L., Daly, C. & McKay, L. L. (1988).Concomitant conjugal transfer of reduced bacteriophage sensitivity mechanisms with lactose-and sucrose-fermenting ability in lactic streptococci. Appl. Environ. Microbiol., 54, 1951–1956.

    Google Scholar 

  • Piard, J.-C., Kuipers, O. P., Rollema, H. S., Desmazeaud, M. J. & De Vos, W. M. (1993).Structure, organization and expression of the lct gene for lacticin 481, a novel lantiobiotic produced by Lactococcus lactis. J. Biol. Chem., 268, 16361–16368.

    Google Scholar 

  • Piard, J.-C., Muriana, P. M., Desmazeaud, M. J. & Klaenhammer, T. R. (1992ft).Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis CNRZ 481. Appl. Environ. Microbiol., 58, 279–284.

    Google Scholar 

  • Poyart-Salmeron, C., Trieu-Cuot, P., Carlier, C. & Courvalin, P. (1990).The integration-excision system of the conjugative transposon Tn1545 is structurally and functionally related to those of lambdoid phages. Mol. Microbiol., 4, 1513–1521.

    Article  Google Scholar 

  • Prère, M.-F., Chandler, M. & Fayet, O. (1990).Transposition in Shigella dysenteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. J. Bacteriol., 172, 4090–4099.

    Google Scholar 

  • Rauch, P. J. G. (1993). The Lactococcus lactis nisin-sucrose conjugative transposon Tn5276. PhD thesis, Wageningen Agricultural University.

    Google Scholar 

  • Rauch, P. J. G. & De Vos, W. M. (1990). Molecular analysis of the Lactococcus lactis nisin-sucrose conjugative transposon. Program Abstr. 3rd Int. ASM Conference on Streptococcal Genetics. American Society for Microbiology, Washington, D.C., abstr. A/46, p. 23.

    Google Scholar 

  • Rauch, P. J. G. & De Vos, W. M. (1992a).Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol., 174, 1280–1287.

    Google Scholar 

  • Rauch, P. J. G. & De Vos, W. M. (1992ft).Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose Operon and characterization of the sacA gene encoding sucrose-ö-phosphate hydrolase. Gene, 121, 55–61.

    Article  Google Scholar 

  • Rauch, P. J. G., Beerthuyzen, M. M. & De Vos, W. M. (1990).Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res., 18, 4253–4254.

    Article  Google Scholar 

  • Rauch, P. J. G., Beerthuyzen, M. M. & De Vos, W. M. (1991). Molecular analysis and evolution of conjugative transposons encoding nisin production and sucrose fermentation in Lactococcus lactis. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 243–249.

    Google Scholar 

  • Reis, M. & Sahl, H.-G. (1991). Genetic analysis of the producer self-protection mechanism (‘immunity’) against Pep5. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 320–331.

    Google Scholar 

  • Rollema, H. S., Both, P. & Siezen, R. J. (1991). NMR and activity studies of nisin degradation products. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 123–130.

    Google Scholar 

  • Rosenberg, M. & Court, D. (1979).Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet., 13, 319–353.

    Article  Google Scholar 

  • Sahl, H.-G., Kordel, M. & Benz, R. (1987).Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol., 149, 120–124.

    Article  Google Scholar 

  • Schnell, N., Entian, K.-D., Schneider, U., Götz, F., Zähner, H., Kellner, R. & Jung, G. (1988).Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide rings. Nature, 333, 276–278.

    Article  Google Scholar 

  • Schnell, N., Entian, K.-D., Götz, F., Hörner, T., Kellner, R. & Jung, G. (1989).Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol. Lett., 58, 263–268.

    Article  Google Scholar 

  • Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Ungermann, V., Götz, F. & Entian, K.-D. (1992).Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur. J. Biochem., 204, 57–68.

    Article  Google Scholar 

  • Song, H.-Y. & Cramer, W. A. (1991).Membrane topology of ColE1 gene products: The immunity protein. J. Bacteriol., 173, 2935–2943.

    Google Scholar 

  • Steele, J. L. & McKay, L. L. (1986).Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol., 51, 57–64.

    Google Scholar 

  • Steele, J. L., Murphy, M. C., Daly, C. & McKay, L. L. (1989).DNA-DNA homology among lactose-and sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage sensitivity. Appl Environ. Microbiol., 55, 2410–2413.

    Google Scholar 

  • Steen, M. T., Chung, Y. J. & Hansen, J. N. (1991).Characterization of the nisin gene as part of a polycistronic Operon in the chromosome of Lactococcus lactis ATCC 11454. Appl Environ. Microbiol., 57, 1181–1188.

    Google Scholar 

  • Stevens, K. A., Sheldon, B. W., Klapes, N. A. & Klaenhammer, T. R. (1991).Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl. Environ. Microbiol., 57, 3613–3615.

    Google Scholar 

  • Thompson, J. & Chassy, B. M. (1981).Uptake and metabolism of sucrose by Streptococcus lactis. J. Bacteriol, 147, 543–551.

    Google Scholar 

  • Thompson, J., Nguyen, N. Y., Sackett, D. L. & Donkersloot, J. A. (1991).Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N 5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1. J. Biol. Chem., 266, 14573–14579.

    Google Scholar 

  • Tsai, H.-J. & Sandine, W. E. (1987).Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl Environ. Microbiol., 53, 352–357.

    Google Scholar 

  • Van Belkum, M. (1992).Cloning, sequencing, and expression in Escherichia coli of IncB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl. Environ. Microbiol., 58, 572–577.

    Google Scholar 

  • Van Belkum, M., Hayema, B. J., Jeeninga, R. E., Kok, J. & Venema, G. (1991).Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl. Environ. Microbiol., 57, 492–498.

    Google Scholar 

  • Van der Meer, J. R., Polman, J., Beethuyzen, M. M., Siezen, R. J., Kuipers, O. P. & de Vos, W. M. (1993).Characterization of the Lactococcus lactis nisin A Operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol., 175, 2578–2588.

    Google Scholar 

  • Van der Vossen, J. M. B. M., Van der Lelie, D. & Venema, G. (1987).Isolation and characterization of Streptococcus cremoris Wg2 specific promoters. Appl. Environ. Microbiol., 53, 2452–2457.

    Google Scholar 

  • Van de Ven, F. J. M., van den Hooven, H. W., Konings, R. N. H. & Hilbers, C. W. (1992).NMR studies of lantibiotics: The structure of nisin in aqueous solution. Eur. J. Biochem., 202, 1181–1188.

    Article  Google Scholar 

  • Von Heijne, G. (1985).Signal sequences. The limits of variation. J. Mol. Biol., 184, 99–105.

    Article  Google Scholar 

  • Wakamiya, T., Fukase, K., Sano, A., Shimbo, K., Kitazawa, M., Horimoto, S., Fujita, H., Kubo, A., Maeshiro, Y. & Shiba, T. (1991). Studies on chemical synthesis of the lanthionine peptide nisin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl, ESCOM, Leiden, The Netherlands, pp. 189–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rauch, P.J.G., Kuipers, O.P., Siezen, R.J., De Vos, W.M. (1994). Genetics and Protein Engineering of Nisin. In: De Vuyst, L., Vandamme, E.J. (eds) Bacteriocins of Lactic Acid Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2668-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2668-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6146-6

  • Online ISBN: 978-1-4615-2668-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics