Skip to main content

Optimizing the Exercise Test for Pharmacological Studies in Patients with Angina Pectoris

  • Chapter
Drug Evaluation in Angina Pectoris

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 158))

Abstract

On the basis of the multitude of studies performed over the last 20 years, many recommendations could be made concerning optimizing the yield and reliability of information from the exercise test for patients with angina. Many of these suggestions, however, have escaped application to clinical pharmaceutical trials. The strength of conclusions made in regard to drug efficacy are only as valuable as the quality of the performance of the exercise test. The following are recommendations for optimizing exercise testing when studying pharmacological therapy for patients with angina:

  1. 1.

    Only patients who exhibit a stable, reproducible chest pain response to exercise are appropriate for such studies. Several preliminary tests are required to determine the appropriateness of a given patient, and a 10% reproducibility criteria should be used.

  2. 2.

    Chest pain should be graded carefully throughout the test, and analysis points should include the onset of pain, the occurrence of moderate pain, and peak angina. The testing endpoint should reflect the intensity of pain that would cause the patient to stop normal daily activities and/or take a sublingual nitroglycerin pill.

  3. 3.

    Exercise protocols should be individualized considering the subject tested and the purpose of the test; ideally the onset of angina should occur within 3–6 minutes and peak angina should be achieved within a duration of 8–12 minutes. Increments in work should be ≤ MET.

  4. 4.

    Gas exchange techniques greatly enhance the precision and reproducibility for quantifying work. Their use in multicenter trials of drug efficacy should be strongly encouraged.

  5. 5.

    The angina response to exercise can be greatly affected by the laboratory environment and other factors, including temperature, time of day, smoking, and meals. Exercise testing should be performed in a well-ventilated room and at a temperature of 20–22°C. Serial testing should be performed at the same time of day and at least 3 hours after abstaining from food, caffeinated beverages, and smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster MWI, Sharpe DN. Exercise testing in angina pectoris: The importance of protocol design in clinical trials. Am Heart J 1989;117:505–508.

    Article  PubMed  CAS  Google Scholar 

  2. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, Froelicher VF. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 1991;17:1334–1342.

    Article  PubMed  CAS  Google Scholar 

  3. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 1983;55:1558–1564.

    PubMed  CAS  Google Scholar 

  4. Panza JA, Quyyumi AA, Diodati JG, Callaham TS, Epstein SE. Prediction of the frequency and duration of ambulatory myocardial ischemia in patients with stable coronary artery disease by determination of the ischemic threshold from exercise testing: Importance of the exercise protocol. J Am Coll Cardiol 1991;17:657–663.

    Article  PubMed  CAS  Google Scholar 

  5. Lipkin DP, Canepa-Anson R, Stephens MR, Poole-Wilson PA. Factors determining symptoms in heart failure: Comparison of fast and slow exercise tests. Br Heart J 1986;55:439–445.

    Article  PubMed  CAS  Google Scholar 

  6. Garber CE, Carleton RA, Camaione DN, Heller GV. The threshold for myocardial ischemia varies in patients with coronary artery disease depending on the exercise protocol. J Am Coll Cardiol 1991;17:1256–1262.

    Article  PubMed  CAS  Google Scholar 

  7. Myers J, Buchanan N, Smith D, Neutel J, Bowes E, Walsh D, Froelicher VF. Individualized ramp treadmill: Observations on a new protocol. Chest 1992;101:2305–2415.

    Google Scholar 

  8. Myers J. Perception of chest pain during exercise in patients with coronary artery disease. Med Sci Sports Exer, 1994, Sept.

    Google Scholar 

  9. Cox J, Naylor CD. The Canadian Cardiovascular Society grading scale for angina pectoris: Is it time for refinements? Ann Intern Med 1992;117:677–683.

    Article  PubMed  CAS  Google Scholar 

  10. Neuberg GW, Friedman SH, Weiss MB, Herman MV. Cardiopulmonary exercise testing. The clinical value of gas exchange data. Arch Intern Med 1988;148:2221–2226.

    Article  PubMed  CAS  Google Scholar 

  11. Wasserman K. New concepts in assessing cardiovascular function. Circulation 1988;78:1060–1071.

    Article  PubMed  CAS  Google Scholar 

  12. Myers J, Froelicher VF. Optimizing the exercise test for pharmacological investigations. Circulation 1990;82:1839–1846

    Article  PubMed  CAS  Google Scholar 

  13. Stachenfeld NS, Eskenazi M, Gleim GW, Coplan NL, Nicholas JA. Predictive accuracy of criteria used to assess maximal oxygen consumption. Am Heart J 1992;123:922.

    Article  PubMed  CAS  Google Scholar 

  14. Coplan NL, Gleim GW, Stachenfeld N, Eskenazi M, et al. Evaluation of 85% predicted maximal heart rate as an endpoint for diagnostic testing. Am Heart J 1991;122:1790–1791.

    Article  PubMed  CAS  Google Scholar 

  15. Bobbio M, Detrano R. A lesson from the controversy about heart rate adjustment of ST segment depression. Circulation 1991;84:1410–1413.

    Article  PubMed  CAS  Google Scholar 

  16. Okin PM, Bergman G, Kligfield P. Effect of ST segment measurement point on performance of standard and heart rate-adjusted ST segment criteria for the identification of coronary artery disease. Circulation 1991;84:57–66.

    Article  PubMed  CAS  Google Scholar 

  17. Kligfield P, Ameisen O, Okin PM. Heart rate adjustment of ST segment depression for improved detection of coronary artery disease. Circulation 1989;79:245–255.

    Article  PubMed  CAS  Google Scholar 

  18. Hollenberg M, Budge WR, Wisneski JA, Gertz EW. Treadmill score quantifies electrocardiographic response to exercise and improves test accuracy and reproducibility. Circulation 1980;61:276.

    Article  PubMed  CAS  Google Scholar 

  19. Lachterman B, Lehmann KG, Detrano R, Neutel J, Froelicher VF. Comparison of ST segment/heart rate index to standard ST criteria for analysis of exercise electrocardiogram. Circulation 1990;82:44–50.

    Article  PubMed  CAS  Google Scholar 

  20. Mark DB, Shaw L, Harreil FE, Hlatky MA, Lee KL, Bengtson JR, McCants CB, Califf RM, Pryor DB. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991;325:849–853.

    Article  PubMed  CAS  Google Scholar 

  21. Lam J, Chaitman BR. Exercise lead systems and newer electrocardiographic parameters. J Cardiac Rehabil 1984;4:507–516.

    Google Scholar 

  22. Lachterman B, Lehmann KG, Abrahamson D, Froelicher VF. “Recovery only” ST segment depression and the predictive accuracy of the exercise test. Ann Intern Med 1990;112:11–16.

    Article  PubMed  CAS  Google Scholar 

  23. Ribisl, PM, Liu J, Mousal, Herbert WG, Miranda CP, Froning JN, Froelicher VF. Comparison of computer ST criteria for diagnosis of severe coronary artery disease. Am J Cardiol, 1993, in press.

    Google Scholar 

  24. Juneau M, Johnstone M, Dempsey E, Waters DD. Exercise-induced myocardial ischemia in a cold environment: Effect of anti-anginal medications. Circulation 1989;79:1015–1020.

    Article  PubMed  CAS  Google Scholar 

  25. Lassvik CT, Areskog N. Angina in cold environment: Reactions to exercise. Br Heart J 1979;42:396–401.

    Article  PubMed  CAS  Google Scholar 

  26. Shea MJ, Deanfield JE, de Landsheere CM, Wilson RA, Kensett M, Selwyn AP. Asymptomatic ischemia following cold provocation. Am Heart J 1987;114:469–476.

    Article  PubMed  CAS  Google Scholar 

  27. Philbrick JT, Horwitz RI, Feinstein AR. Methodologic problems of exercise testing for coronary artery disease: Groups, analysis and bias. Am J Cardiol 1980;46:807–812.

    Article  PubMed  CAS  Google Scholar 

  28. Philbrick JT, Horwitz RI, Feinstein AR, Langou RA, Chandler JP. The limited spectrum of patients studied in exercise test research. Analyzing the tip of the iceberg. JAMA 1982;248:2467–2470.

    Article  PubMed  CAS  Google Scholar 

  29. Redwood DR, Rosing DR, Goldstein RE, Beiser GD, Epstein SE. Importance of the design of an exercise protocol in the evaluation of patients with angina pectoris. Circulation 1971;43:618–628.

    Article  PubMed  CAS  Google Scholar 

  30. Starling MR, Moody M, Crawford MH, Levi B, O’Rourke RA. Repeat treadmill exercise testing: Variability of results in patients with angina pectoris. Am Heart J 1984;107:298–303.

    Article  PubMed  CAS  Google Scholar 

  31. Sullivan M, Genfer F, Savvides M, Roberts M, Myers J, Froelicher VF. The reproducibility of hemodynamic electrocardiographic, and gas exchange data during treadmill exercise in patients with stable angina pectoris. Chest 1984;86:375–382.

    Article  PubMed  CAS  Google Scholar 

  32. Pinsky DJ, Ahern D, Wilson PB, Kukin ML, Packer M. How many exercise tests are needed to minimize the placebo effect of serial exercise testing in patients with chronic heart failure? Circulation 1989;80(Suppl II):II426.

    Google Scholar 

  33. Kraemer MD, Sullivan M, Atwood JE, Forbes S, Myers J, Froelicher VF. Reproducibility of treadmill exercise data in patients with atrial fibrillation. Cardiology 1989;76:234–242.

    Article  PubMed  CAS  Google Scholar 

  34. Elborn JS, Stanford CF, Nichols DP. Reproducibility of cardiopulmonary parameters during exercise in patients with chronic cardiac failure: The need for a preliminary test. Eur Heart J 1990;11:75–81.

    PubMed  CAS  Google Scholar 

  35. Garrard CS, Emmons C. The reproducibility of the respiratory responses to maximum exercise. Respiration 1986;49:94–100.

    Article  PubMed  CAS  Google Scholar 

  36. Joy M, Pollard CM. Diurnal variation in exercise responses in angina pectoris. Br Heart J 1982;48:156–160.

    Article  PubMed  CAS  Google Scholar 

  37. Miranda CP, Liu J, Kadar A, Janosi A, Froning J, Lehmann KG, Froelicher VF. Usefulness of exercise-induced ST-segment depression in the inferior leads during exercise testing as a marker for coronary artery disease. Am J Cardiol 1992;69:303–307.

    Article  PubMed  CAS  Google Scholar 

  38. Borg G, Holmgren A, Lindbland I. Quantitative evaluation of chest pain. Acta Med Scand 1981;644:43–45.

    CAS  Google Scholar 

  39. Borg G, Holmgren A, Lindbland I. Perception of chest pain during physical work in a group of patients with angina pectoris. Stockholm, Sweden: Reports from the Institute of Applied Psychology 1980;81:1–8.

    Google Scholar 

  40. American College of Sports Medicine. Guidelines for Exercise Testing and Exercise Prescription. Philadelphia: Lea & Febiger, 1991.

    Google Scholar 

  41. Campeau. Grading of angina pectoris. Circulation 1976;54:522–523.

    PubMed  CAS  Google Scholar 

  42. New York Heart Association Criteria Committee— Koosman CE, Chairman. Diseases of the Heart and Blood Vessels: Nomenclature and Criteria for Diagnosis, 6th ed. Boston: Little, Brown, 1964:112.

    Google Scholar 

  43. American Heart Association Council of Cardiovascular Surgery Coronary Artery Disease Reporting System. Circulation 1975;51:22.

    Google Scholar 

  44. Redwood DR, Rosing DR, Epstein SE. Circulatory and symptomatic effects of physical training in patients with coronary-artery disease and angina pectoris. N Engl J Med 1972;286:959–965.

    Article  PubMed  CAS  Google Scholar 

  45. Sullivan M, Myers J, Buchanan N, Froelicher VF. Effect of sublingual nitroglycerin on the gas exchange response to exercise in patients with angina pectoris. Am J Cardiol, 1993;72:767–769.

    Article  PubMed  CAS  Google Scholar 

  46. Stuart RJ, Ellestad MH. National survey of exercise stress testing facilities. Chest 1980;77:94–97.

    Article  PubMed  Google Scholar 

  47. Haskell W, Savin W, Oldridge N, DeBusk R. Factors influencing estimated oxygen uptake during exercise testing soon after myocardial infarction. Am J Cardiol 1982;50:299–304.

    Article  PubMed  CAS  Google Scholar 

  48. Sullivan M, McKirnan MD. Errors in predicting functional capacity for postmyocardial infarction patients using a modified Bruce protocol. Am Heart J 1984;107:486–491.

    Article  PubMed  CAS  Google Scholar 

  49. Fletcher GF, Froelicher VF, Hartley LH, Haskell WL, Pollock ML. Exercise standards: A statement for health professionals from the American Heart Association. Circulation 1990;82:2286–2322.

    Article  PubMed  CAS  Google Scholar 

  50. Smokier PE, MacAlpin RN, Alvaro A, Kattus AA. Reproducibility of a multi-stage near maximal treadmill test for exercise tolerance in angina pectoris. Circulation 1973;48:346–351.

    Article  Google Scholar 

  51. Hambrecht R, Schuler G, Muth T, Grunze MF, Marburger CT, Niebauer J, Methfessel SM, Kubler W. Greater diagnostic sensitivity of treadmill versus cycle exercise testing of asymptomatic men with coronary artery disease. Am J Cardiol 1992;70:141–146.

    Article  PubMed  CAS  Google Scholar 

  52. Wicks JR, Sutton JR, Oldridge NB, Jones NL. Comparison of the electrocardiographic changes induced by maximum exercise testing with treadmill and cycle ergometer. Circulation 1978;57:1066–1069.

    Article  PubMed  CAS  Google Scholar 

  53. Roberts JM, Sullivan M, Froelicher VF, Genter F, Myers J. Predicting oxygen uptake from treadmill testing in normal subjects and coronary artery disease patients. Am Heart J 1984;108:1454–1460.

    Article  PubMed  CAS  Google Scholar 

  54. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 1973;85:546–562.

    Article  PubMed  CAS  Google Scholar 

  55. Froelicher VF, Thompson AJ, Noguera L, Davis G, Stewart AJ, Triebwasser JH. Prediction of maximal oxygen consumption. Comparison of the Bruce and Balke treadmill protocols. Chest 1975;68:331–336.

    Article  PubMed  Google Scholar 

  56. Myers J, Salleh A, Buchanan N, Smith D, Neutel J, Bowes E, Froelicher VF. Ventilatory mechanisms of exercise intolerance in chronic heart failure. Am Heart J 1992;124:710–719.

    Article  PubMed  CAS  Google Scholar 

  57. Sullivan MJ, Higginbotham MB, Cobb FR. Increased exercise ventilation in patients with chronic heart failure: Intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation 1988;77:552–559.

    Article  PubMed  CAS  Google Scholar 

  58. Hughson RL. Alterations in the oxygen deficit-oxygen debt relationships with beta-adrenergic receptor blockade in man. J Physiol (Lond) 1984;349:375–387.

    CAS  Google Scholar 

  59. Petersen ES, Whipp BJ, Davis JA, Huntsman DJ, Brown HV, Wasserman K. Effects of β-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol 1983;54:1306–1313.

    PubMed  CAS  Google Scholar 

  60. Twentyman OP, Disley A, Gribbin HR, Alberti KGM, Tattersfield AE. Effect of β-adrenergic blockade on respiratory and metablic responses to exercise. J Appl Physiol 1981;51:788–792.

    PubMed  CAS  Google Scholar 

  61. Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand 1974;415:1–68.

    CAS  Google Scholar 

  62. Linnarsson D, Karlsson J, Fagraeus L, Saltin B. Muscle metabolites and oxygen deficit with exercise in hypoxia. J Appl Physiol 1974;36:399–402.

    PubMed  CAS  Google Scholar 

  63. Moore DP, Weston AR, Hughes JMB, Oakley CM, Cleland JGF. Effects of increased inspired oxygen concentrations on exercise performance in chronic heart failure. Lancet 1992;339:850–853.

    Article  PubMed  CAS  Google Scholar 

  64. Hickson RC, Bomze HA, Holloszy JO. Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. J Appl Physiol 1978;44:877–881.

    PubMed  CAS  Google Scholar 

  65. Jones NL. Clinical Exercise Testing. Philadelphia: W.B. Saunders, 1988:208–212.

    Google Scholar 

  66. American Heart Association. Laboratory Standards for Exercise Testing. Dallas, 1994, in press.

    Google Scholar 

  67. Myers J, Walsh D, Sullivan M, Froelicher VF. Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 1990;68:404–410.

    Article  PubMed  CAS  Google Scholar 

  68. Nelson RR, Glbel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 1974;50:1179–1189.

    Article  PubMed  CAS  Google Scholar 

  69. Hill DW, Cureton KJ, Collins MA, Grisham SC. Diurnal Variations in responses to exercise in “morning types” and “evening types.” J Sports Med 1988;28:213–219.

    CAS  Google Scholar 

  70. Handler CE, Sowton E. Diurnal variation and reproducibility of predischarge submaximal exercise testing after myocardial infarction. Br Heart J 1984;52:299–303.

    Article  PubMed  CAS  Google Scholar 

  71. Waters DD, McCans JL, Crean PA. Serial exercise testing in patients with effort angina: Variable tolerance, fixed threshold. J Am Coll Cardiol 1985;6:1011–1015.

    Article  PubMed  CAS  Google Scholar 

  72. Oram S, Sowton E. Tobacco angina. Q J Med 1963;32:115–143.

    PubMed  CAS  Google Scholar 

  73. Aronow WS. Effect of passive smoking on angina pectoris. N Engl J Med 1978;299:21–24.

    Article  PubMed  CAS  Google Scholar 

  74. Deanfield J, Wright C, Krikler S, Ribeiro P, Fox K. Cigarette smoking and the treatment of angina with propranolol, atenolol, and nifedipine. N Engl J Med 1984;310:951–954.

    Article  PubMed  CAS  Google Scholar 

  75. Fox K, Jonathan A, Williams H, Selwyn A. Interaction between cigarettes and propranolol in treatment of angina pectoris. Br Med J 1980;3:191–193.

    Article  Google Scholar 

  76. Heberden W. Some account of a disorder of the breast. Med Trans R Coll Physicians Lond 1972;2:59–67.

    Google Scholar 

  77. Cowley AJ, Fullwood CJ, Stainer K, Harrison E, Muller AF, Hampton JR. Post-prandial worsening of angina: All due to changes in cardiac output?

    Google Scholar 

  78. Goldstein RE, Redwood DR, Rosing DR, Beiser D, Epstein SE. Alterations in the circulatory response to exercise following a meal and their relationship to postprandial angina pectoris. Circulation 1971;44:90–100.

    Article  PubMed  CAS  Google Scholar 

  79. Dobmeyer DJ, Stine RA, Loler CV, Greenberg R, Schael SF. The arrhythmogenic effects of caffeine in human beings. N Engl J Med 1983;308:814–816.

    Article  PubMed  CAS  Google Scholar 

  80. Prineas FJ, Jacobs DR Jr, Crow RS, Blackburn H. Coffee, tea and VPB. J Chronic Dis 1980;33:67–72.

    Article  PubMed  CAS  Google Scholar 

  81. Whitsett TL, Shristensen HD, Hirsh DR. Cardiovascular effects of caffeine in humans. In: HH Wang, MR Blumenthal, SH Nagei, eds. Central Control Mechanisms and Related Topics. Mt. Kisco, NY: Futura Press, 1980:247–259.

    Google Scholar 

  82. Conrad KA, Blanchard J, Trand JM. Cardiovascular effects of caffeine in elderly men. J Am Geriatr Soc 1982;30:267–272.

    PubMed  CAS  Google Scholar 

  83. Whitsett TL, Manion CV, Christensen D. Cardiovascular effects of coffee and caffeine. Am J Cardiol 1984;53:918–922.

    Article  PubMed  CAS  Google Scholar 

  84. Piters KM, Colombo A, Olson HG, Butman SM. Effect of coffee on exercise-induced angina pectoris due to coronary artery disease in habitual coffee drinkers. Am J Cardiol 1985;55:277–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Diego Ardissino M.D. Lionel H. Opie M.D., Ph.D. Stefano Savonitto M.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myers, J., Froelicher, V.F. (1994). Optimizing the Exercise Test for Pharmacological Studies in Patients with Angina Pectoris. In: Ardissino, D., Opie, L.H., Savonitto, S. (eds) Drug Evaluation in Angina Pectoris. Developments in Cardiovascular Medicine, vol 158. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2628-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2628-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6127-5

  • Online ISBN: 978-1-4615-2628-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics