Skip to main content

Role of Na/H Exchange and [Ca2+]i in Electrophysiological Responses to Acidosis and Realkalization in Isolated Guinea Pig Ventricular Myocytes

  • Chapter
Membrane Physiopathology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 159))

Abstract

It is well known that reperfusion of the ischemic heart results in a rapid increase in the intracellular calcium concentration ([Ca2+]i) (1). However, the mechanisms responsible for the increase in [Ca2+]i remain unclear (1). In this regard, since the intracellular pH is much lower than that of the perfusate during early reperfusion (2), a pH gradient develops instantaneously across the cardiac cell membrane. This pH gradient activates the sodium/hydrogen (Na+/H+) exchange, leading to a rapid accumulation of intracellular sodium ([Na+]i). The increase in [Na+]i may, in turn, result in an increase in [Ca2+]i via sodium/calcium (Na+/Ca2+) exchange (reviewed in 1,3,4). Therefore, the realkalization-induced activation of Na+/H+ exchange, and subsequent accumulation of [Na+]i may explain, at least in part, the reperfusion-induced increase in [Ca2+]i (reviewed in 1, 3, 4). This hypothesis has been supported recently by several lines of evidence. Firstly, it has been reported that the increase in [Na+]i occurs prior to and is closely correlated to the subsequent increase in [Ca2+]i (5). Secondly, the increases in [Na+]i and [Ca2+]i associated with reperfusion can be attenuated either by reperfusion with an acidotic buffer (6), or by inhibitors of the Na+/H+ exchanger (5, 7). Finally, improved ventricular recovery and a reduction in reperfusion associated contracture has been demonstrated using amiloride or amiloride analogues in rat and guinea pig hearts (8, 9, 10). Conversely, administration of lactate to isolated rat hearts prior to the induction of ischemia significantly reduces recovery of function upon reperfusion; an effect which can be reversed by inhibitors of Na+/H+ exchange (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tani M (1990) Ann Rev Physiol 52:543–559

    Article  CAS  Google Scholar 

  2. Jacobus WE, Taylor GJ, Hollis, DP and Nunally RL (1977) Nature 265:756–758

    Article  PubMed  CAS  Google Scholar 

  3. Lazdunski M, Frelin C and Vigne P (1985) Eur J Biochem 149:1–4

    Article  PubMed  Google Scholar 

  4. Karmazyn M and Moffat MP (1993) Cardiovasc Res 27:915–924

    Article  PubMed  CAS  Google Scholar 

  5. Tani M and Neely JR (1989) Circ Res 65:1045–1056

    Article  PubMed  CAS  Google Scholar 

  6. Panagidopoulos S, Daly MT and Nayler WG (1990) Am J Physiol 258:H821–H828

    Google Scholar 

  7. Meng H and Pierce GN (1991) J Pharmacol Exp Ther 256:1094–1100

    PubMed  CAS  Google Scholar 

  8. Karmazyn M (1988) Am J Physiol 255:H608–H615

    PubMed  CAS  Google Scholar 

  9. Karmazyn M, Ray M and Haist J (1993) J Cardiovasc Pharmacol 21:172–178

    Article  PubMed  CAS  Google Scholar 

  10. Moffat M and Karmazyn M (1993) J Mol Cell Cardiol, in press

    Google Scholar 

  11. Karmazyn M (1993) Br J Pharmacol 108:50–56

    Article  PubMed  CAS  Google Scholar 

  12. Dennis SC, Coetzee WA, Cragoe EJ and Opie LH (1990) Circ Res 66:1156–1159

    Article  PubMed  CAS  Google Scholar 

  13. Duff HJ, Brown CE, Cragoe EJ and Rahmberg M (1991) J Cardiovasc Pharmacol 17:879–888

    Article  PubMed  CAS  Google Scholar 

  14. Duan J and Moffat MP (1992) Adv Exp Med Biol 311:435–436

    Article  PubMed  CAS  Google Scholar 

  15. Serur JR, Skelton R, Bodem R and Sonnenblick EH (1976) J Mol Cell Cardiol 8:823–836

    Article  PubMed  CAS  Google Scholar 

  16. Fry CH and Poole-Wilson PA (1981) J Physiol 313:141–160

    PubMed  CAS  Google Scholar 

  17. Dennis SC, Gevers W and Opie LH (1991) J Mol Cell Cardiol 23:1077–1086

    Article  PubMed  CAS  Google Scholar 

  18. Neely JR and Grotyohann LW (1984) Circ Res 55:816–824

    Article  PubMed  CAS  Google Scholar 

  19. Ellis D and Nioreaud J (1987) J Physiol 383:125–141

    PubMed  CAS  Google Scholar 

  20. Sato R, Noma A, Kurachi Y and Irisawa H (1985) Circ Res 57:553–561

    Article  PubMed  CAS  Google Scholar 

  21. Irasawa H and Sato R (1986) Circ Res 59:348–355

    Article  Google Scholar 

  22. Yatani A and Goto M (1983) Jpn J Physiol 33:403–415

    Article  PubMed  CAS  Google Scholar 

  23. Duan J and Moffat MP (1990) Naunyn-Schmiedeberg Arch Pharmacol 342:342–348

    Article  CAS  Google Scholar 

  24. Moffat MP and Tsushima RG (1989) Can J Physiol Pharmacol 67:929–935

    Article  PubMed  CAS  Google Scholar 

  25. Imai S, Shi AY, Ishibashi T and Nakazawa M (1991) J Mol Cell Cardiol 23:505–517

    Article  PubMed  CAS  Google Scholar 

  26. Anderson SE, Murphy E, Steenbergen C, London RE and Cala PM (1990) Am J Physiol 259:C940–C948

    PubMed  CAS  Google Scholar 

  27. January CT and Fozzard HA (1988) Pharmacol Rev 40:219–227

    PubMed  CAS  Google Scholar 

  28. Orchard CH and Kentish JC (1990) Am J Physiol 258:C967–C981

    PubMed  CAS  Google Scholar 

  29. Ravens U and Wettwer E (1989) J Cardiovasc Pharmacol 14 (suppl 3):S30–S35

    Article  PubMed  CAS  Google Scholar 

  30. Reiter M Pharmacol Rev 40:189–217

    Google Scholar 

  31. Kim D and Smith TW (1987) Am J Physiol 253:C137–C146

    PubMed  CAS  Google Scholar 

  32. Kim D and Smith TW (1988) J Physiol 398:391–410

    PubMed  CAS  Google Scholar 

  33. Piwnica-Worms D, Jacob R, Horres CR and Lieberman M (1985) J Gen Physiol 85:43–64

    Article  PubMed  CAS  Google Scholar 

  34. Lazdunski M, Frelin C and Vigne P (1985) J Mol Cell Cardiol 17:1029–1042

    Article  PubMed  CAS  Google Scholar 

  35. Piwnica-Worms D, Jacob R, Shigeto N, Horres CR and Lieberman M (1985) J Mol Cell Cardiol 85:43–64

    CAS  Google Scholar 

  36. Rasmussen HH, Cragoe EJ and Ten Eick RE (1989) Am J Physiol 256:H256–H264

    PubMed  CAS  Google Scholar 

  37. Shouten VJA, Los GJ, Kuypers CJ, Brinkman J and Huysmans HA (1991) Am J Physiol 260:H89–H99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ghassan Bkaily

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moffat, M.P., Duan, J., Ward, C.A. (1994). Role of Na/H Exchange and [Ca2+]i in Electrophysiological Responses to Acidosis and Realkalization in Isolated Guinea Pig Ventricular Myocytes. In: Bkaily, G. (eds) Membrane Physiopathology. Developments in Cardiovascular Medicine, vol 159. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2616-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2616-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6121-3

  • Online ISBN: 978-1-4615-2616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics