Skip to main content

Reversible phosphorylation of eukaryotic initiation factor 2α in response to endoplasmic reticular signaling

  • Chapter
Reversible Protein Phosphorylation in Cell Regulation

Abstract

Agents, such as EGTA, thapsigargin, and ionophore A23187, that mobilize sequestered Ca2+ from the endoplasmic reticulum (ER) or dithiothreitol (DTT) that compromises the oxidizing environment of the organelle, disrupt early protein processing and inhibit translational initiation. Increased phosphorylation of eIF-2α (5-fold) and inhibition of eIF-2B activity (50%) occur in intact GH3 cells exposed to these agents for 15 min (Prostko et al. J. Biol Chem. 267: 16751–16754, 1992). Alterations in eIF-2α phosphorylation and translational activity in response to EGTA were re versed by addition of Ca2+ in excess of chelator while responses to DTT were reversible by washing. Exposure for 3 h to either A23187 or DTT, previously shown to induce transcription-dependent translational recovery, resulted in dephosphorylation of eIF-2α in a manner blocked by antinomycin D. Phosphorylation of eIF-2α in response to A23187 or DTT was not prevented by conventional inhibitors of translation including cycloheximide, pactamycin, puromycin, or verrucarin. Prolonged inhibition of protein synthesis to deplete the ER of substrates for protein processing resulted in increased eIF-2α phosphorylation, decreased eIF-2B activity, and reduced monosome content that were indicative of time-dependent blockade; these inhibitors did not abolish polysomal content. Superphosphorylation of eIF-2α occurred upon exposure of these preparations to either A23187 or DTT. Tunicamycin, an inhibitor of co-translational transfer of core oligosaccharide, provoked rapid phosphorylation of eIF-2α and inhibition of translational initiation whereas sugar analog inhibitors of glycoprotein processing did neither. A flow of processible protein to the ER does not appear to be required for the phosphorylation of eIF-2α in response to ER perturbants. We hypothesize that perturbation of the translocon, rather than suppression of protein processing, initiates the signal emanating from the ER culminating in eIF-2α phosphorylation and translational repression. (Mol Cell Biochem 127/128: 255–265, 1993)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koch GLE: The endoplasmic reticulum and calcium storage. Bioessays 12: 527–531, 1990

    Article  PubMed  CAS  Google Scholar 

  2. Burgoyne RD, Cheek TR: Locating intracellular calcium stores. Trends Biochem Sci 16: 319–320, 1991

    Article  PubMed  CAS  Google Scholar 

  3. Lytton J, Nigam SK: Intracellular calcium: molecules and pools. Curr Opinion Cell Biol 4: 220–226, 1992

    Article  PubMed  CAS  Google Scholar 

  4. Poruchynsky MS, Maass DR, Atkinson PH: Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol 114: 651–661, 1991

    Article  PubMed  CAS  Google Scholar 

  5. Lodish HF, Kong N, Wikstrom L: Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J Cell Biol 267: 12753–12760, 1992

    CAS  Google Scholar 

  6. Lodish HF, Kong N: Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J Biol Chem 265: 10893–10899, 1990

    PubMed  CAS  Google Scholar 

  7. Kuznetsov G, Brostrom MA, Brostrom CO: Demonstration of a calcium requirement for secretory protein processing and export: differential effects of calcium and dithiothreitol. J Biol Chem 267: 3932–3939, 1992

    PubMed  CAS  Google Scholar 

  8. Kuznetsov G, Brostrom MA, Brostrom CO: Role of endoplasmic reticular calcium in oligosaccharide processing of α1-antitrypsin. J Biol Chem 268: 2001–2008, 1993

    PubMed  CAS  Google Scholar 

  9. Wileman T, Kane LP, Carson G, Terhorst C: Depletion of cellular calcium accelerates protein degradation in the endoplasmic retic ulum. J Biol Chem 266: 4500–4507, 1991

    PubMed  CAS  Google Scholar 

  10. Tsao YS, Ivessa NE, Adesnik M, Sabatini DD, Kreibich G: Carboxy terminally truncated forms of ribophorin I are degraded in pre-Golgi compartments by a calcium-dependent process. J Cell Biol 116: 57–67, 1992

    Article  PubMed  CAS  Google Scholar 

  11. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87: 2466–2470, 1990

    Article  PubMed  CAS  Google Scholar 

  12. Westley JW: Polyether Antibiotics: Naturally Occurring Acid Ionophores, Biology, Vol. 1. Dekker, New York/Basel, 1982, pp 1–465

    Google Scholar 

  13. Rotman EI, Brostrom MA, Brostrom CO: Inhibition of protein synthesis in intact mammalian cells by arachidonic acid. Biochem J 282: 487–494, 1992

    PubMed  CAS  Google Scholar 

  14. Brostrom MA, Prostko CR, Gmitter-Yellen D, Grandison LJ, Kuznetsov G, Wong WL, Brostrom CO: Inhibition of translational initiation by metallo-endoprotease antagonists. Evidence for involvement of sequestered Ca2+ stores. J Biol Chem 266: 7037–7043, 1991

    PubMed  CAS  Google Scholar 

  15. Chin KV, Cade C, Brostrom CO, Galuska EM, Brostrom MA: Calcium dependent regulation of protein synthesis at translational initiation in eukaryotic cells. J Biol Chem 262: 16509–16514, 1987

    PubMed  CAS  Google Scholar 

  16. Brostrom CO, Chin KV, Wong WL, Cade C, Brostrom MA: Inhib ition of translational initiation in eukaryotic cells by calcium ionophore. J Biol Chem 254: 1644–1649, 1989

    Google Scholar 

  17. Prostko CR, Brostrom MA, Malara EM, Brostrom CO: Phosphorylation of eukaryotic initiation factor (eIF) 2α and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J Biol Chem 267: 16751–16754, 1992

    PubMed  CAS  Google Scholar 

  18. Wong WL, Brostrom MA, Kuznetsov G, Gmitter-Yellen D, Brostrom CO: Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. Biochem J 289: 71–79, 1993

    PubMed  CAS  Google Scholar 

  19. Wong WL, Brostrom MA, Brostrom CO: Effects of calcium and ionophore A23187 on protein synthesis in intact rabbit reticulocytes. Int J Biochem 23: 605–608, 1991

    Article  PubMed  CAS  Google Scholar 

  20. Ryazanov AG, Spirin AS: Phosphorylation of elongation factor 2: a key mechanism regulating gene expression in vertebrates. The New Biologist 2: 843–850, 1990

    PubMed  CAS  Google Scholar 

  21. Braakman I, Helenius J, Helenius A: Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356: 260–262, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Brostrom MA, Cade C, Prostko CR, Gmitter-Yellen D, Brostrom CO: Accommodation of protein synthesis to chronic deprivation of intracellular sequestered calcium: a putative role for GRP78. J Biol Chem 265: 20539–20546, 1990

    PubMed  CAS  Google Scholar 

  23. Elbein AD: Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Ann Rev Biochem 56: 497–534, 1987

    Article  PubMed  CAS  Google Scholar 

  24. Lee AS: Mammalian stress response: induction of the glucose-regulated protein family. Curr Opinion Cell Biol 4: 267–273, 1992

    Article  PubMed  CAS  Google Scholar 

  25. Prostko CR, Brostrom MA, Brostrom CO: Stimulation of GRP78 gene transcription by phorbol ester and cAMP in GH3 pituitary cells: the accommodation of protein synthesis to chronic deprivation of intracellular sequestered calcium. J Biol Chem 266: 19790–19795,1992

    Google Scholar 

  26. Hershey JWB: Translational control in mammalian cells. Ann Rev Biochem 60: 717–755, 1991

    Article  PubMed  CAS  Google Scholar 

  27. Proud CG: Protein phosphorylation in translational control. Curr Topics Cell Regul 32: 243–369, 1992

    CAS  Google Scholar 

  28. Safer B: 2B or not 2B: regulation of the catalytic utilization of eIF-2. Cell 33: 7–8, 1983

    Article  PubMed  CAS  Google Scholar 

  29. Rowlands AG, Panniers R, Henshaw EC: The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem 263: 5526–5533, 1988

    PubMed  CAS  Google Scholar 

  30. Brostrom CO, Bocckino SB, Brostrom MA: Identification of a calcium requirement for protein synthesis in eukaryotic cells. J Biol Chem 258: 14390–14399, 1983

    PubMed  CAS  Google Scholar 

  31. Scorsone KA, Panniers R, Rowlands AG, Henshaw EC: Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J Biol Chem 262: 14538–14543, 1987

    PubMed  CAS  Google Scholar 

  32. Rowlands AG, Montine KS, Henshaw EC, Panniers R: Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells. Eur J Biochem 175: 93–99, 1988

    Article  PubMed  CAS  Google Scholar 

  33. Brostrom CO, Bocckino SB, Brostrom MA, Galuska EM: Regulation of protein synthesis in isolated hepatocytes by calcium-mobilizing hormones. Mol Pharmacol 29: 104–111, 1986

    PubMed  CAS  Google Scholar 

  34. Vazquez D: Inhibitors of Protein Biosynthesis. Springer-Verlag, Berlin, 1979, pp 1–312

    Google Scholar 

  35. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosac-charides. Ann Rev Biochem 54: 631–644, 1985

    Article  PubMed  CAS  Google Scholar 

  36. Roth J: Subcellular organization of glycosylation in mammalian cells. Biochim Biophys Acta 906: 405–436, 1987

    PubMed  CAS  Google Scholar 

  37. Lodish HF, Kong N, Hirani S, Rasmussen J: A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol 104: 221–230, 1987

    Article  PubMed  CAS  Google Scholar 

  38. Bischoff J, Liscum L, Kornfeld R: The use of 1-deoxymannojirimycin to evaluate the role of various α-mannosidases in oligosaccharide processing in intact cells. J Biol Chem 261: 4766–4774, 1986

    PubMed  CAS  Google Scholar 

  39. Kimball SR, Antonetti DA, Brawley RM, Jefferson LS: Effect of histidinol on peptide-chain initiation in perfused rat liver. J Biol Chem 266: 1969–1976, 1991

    PubMed  CAS  Google Scholar 

  40. Vogel JP, Misra LM, Rose MD: Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110: 1885–1895, 1990

    Article  PubMed  CAS  Google Scholar 

  41. Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW: Sec61 and BiP directly facilitate polypeptide translocation into the ER. Cell 69: 353–365, 1992

    Article  PubMed  CAS  Google Scholar 

  42. Sanders SL, Schekman R: Polypeptide translocation across the endoplasmic reticulum membrane. J Biol Chem 267: 13791–13794, 1992

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this chapter

Cite this chapter

Prostko, C.R., Brostrom, M.A., Brostrom, C.O. (1993). Reversible phosphorylation of eukaryotic initiation factor 2α in response to endoplasmic reticular signaling. In: Khandelwal, R.L., Wang, J.H. (eds) Reversible Protein Phosphorylation in Cell Regulation. Developments in Molecular and Cellular Biochemistry, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2600-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2600-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-2637-3

  • Online ISBN: 978-1-4615-2600-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics