Skip to main content

Cell-cell adhesion in invasion and metastasis of carcinomas

  • Chapter
Mammary Tumorigenesis and Malignant Progression

Part of the book series: Cancer Treatment and Research ((CTAR,volume 71))

Abstract

Metastasis of tumor cells involves a series of consecutive attachment and deattachment events that are based on a multitude of specific cell-to-cell and cell-to-substrate interactions. The process is initiated by disaggregation of invasive cells from the primary carcinoma — a step that requires a breakdown of intercellular adhesion (see below for a detailed discussion). Invasion then depends on novel adhesive interactions with extracellular matrix components of the basement membrane and the mesenchymal tissue. The hallmark of invasion (in particular in carcinomas) is the penetration of tumor cells through the surrounding basement membrane — a process that indicates the transition from a benign carcinoma in situ to a malignant invasive tumor. This step requires adhesion to and digestion of extracellular matrix molecules, like laminin and collagen type IV. It has been shown, for instance, that invasive tumor cells express elevated levels of type IV collagenase and of both laminin and collagen IV receptors [1,2]. A similar combination of changes in proteolytic and adhesive activities also aids the invasive cells in their movement through the interstitial stroma and through basement membranes of blood vessels. For instance, metastasis formation in vivo could be suppressed by injection of the cell attachment peptide YIGSR that is located in the laminin Bl chain [3]. Various experiments have shown that proteins containing the RGD amino acid sequence for recognition by integrin receptors serve as substrates for migrating malignant cells [46]. An important role of integrin receptors in metastasis formation was revealed by expression of the α2 integrin cDNA in low metastatic rhabdomyosarcoma cells. The transfected cells expressed functional α2β1 adhesion receptors, they exhibited enhanced adhesion to collagen and laminin in vitro, and they produced more metastatic tumor colonies in nude mice in comparison to the parental cells [7]. Interestingly, transformation of rodent cells by oncogenic viruses resulted in a decrease of integrin receptors [8], and overexpression of the a5βl integrin in transformed Chinese hamster ovary cells reduced tumorigenicity and motility of the cells [9]. These results reveal a dual role of cell matrix adhesion in tumorigenesis: on the one hand, adhesion to extracellular matrix is required for cell locomotion, but on the other hand, it can impose constraints on motility and growth and thus must be minimized in certain cases [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liotta LA, Steeg PS, Stetler-Stevenson WG. 1991. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336.

    Article  PubMed  CAS  Google Scholar 

  2. Dedhar S, Saulnier R. 1990. Alterations in integrin receptor expression on chemically transformed human cells: specific enhancement of laminin and collagen receptor complexes. J Cell Biol 110: 481–489.

    Article  PubMed  CAS  Google Scholar 

  3. Iwamoto Y, Robey F, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR. 1987. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metatasis formation. Science 238: 1132–1134.

    Article  PubMed  CAS  Google Scholar 

  4. Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E. 1988. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic petides. J Cell Biol 106: 925–930.

    Article  PubMed  CAS  Google Scholar 

  5. Yamada KM, Kennedy DW, Yamada SS, Gralnick H, Chen W-T, Akiyama SK. 1990. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res 50: 4485–4496.

    PubMed  CAS  Google Scholar 

  6. Humphries MJ, Olden K, Yamada K. 1986. A synthetic peptide from fibronectin inhibits experimental metatasis of murine melanoma cells. Science 233: 467–470.

    Article  PubMed  CAS  Google Scholar 

  7. Chan BMC, Matsuura N, Takada Y, Zetter B, Hemler ME. 1991. In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251: 1600–1602.

    Article  PubMed  CAS  Google Scholar 

  8. Plantefaber LC, Hynes RO. 1989. Changes in integrin receptors on oncogcnically transformed cells. Cell 56: 281–290.

    Article  PubMed  CAS  Google Scholar 

  9. Giancotti FG, Ruoslahti E. 1990. Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 849–859.

    Article  PubMed  CAS  Google Scholar 

  10. Ruoslahti E. 1991. Integrins. J Clin Invest 87: 1–5.

    Article  PubMed  CAS  Google Scholar 

  11. Raz A, Pazerini G, Carmi P. 1989. Identification of the metastasis-associate, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res 49: 3489–3493.

    PubMed  CAS  Google Scholar 

  12. Zhu D, Cheng C-F, Pauli BU. 1991. Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci USA 88: 9568–9572.

    Article  PubMed  CAS  Google Scholar 

  13. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. 1991. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24.

    Article  PubMed  Google Scholar 

  14. Stamenkovic I, Amiot M, Pesando JM, Seed B. 1989. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56: 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein L, Zhou DFH, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC. 1989. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteo-glycan core and link proteins. Cell 56: 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  16. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. 1990. CD44 is the principal cell surface receptor for hyaluronate. Cell 61: 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  17. Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P, Zöller M. 1992. Participation in normal immune response of a metastasis inducing splice variant of CD44. Science 257: 682–685.

    Article  PubMed  CAS  Google Scholar 

  18. Gabbert H, Wagner R, Moll R, Gerharz C-D. 1985. Tumor dedifferentiation: an important step in tumor invasion. Clin Exp Metastasis 3: 257–279.

    Article  PubMed  CAS  Google Scholar 

  19. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Tupert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B. 1990. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247: 49–56.

    Article  PubMed  CAS  Google Scholar 

  20. Roth J, Zuber C, Wagner P, Taatjes DJ, Weisgerber C, Heitz PU, Goridis C, Bitter-Suermann D. 1988. Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 85: 2999–3003.

    Article  PubMed  CAS  Google Scholar 

  21. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanncrs CP. 1989. Carcino-embryonic antigen, a human tumor marker functions as an intercellular adhesion molecule. Cell 57: 327–334.

    Article  PubMed  CAS  Google Scholar 

  22. Takeichi M. 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  23. Behrens J, Birchmeier W, Goodman SL, Imhof BA. 1985. Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-Arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol 101: 1307–1315.

    Article  PubMed  CAS  Google Scholar 

  24. Gumbiner B, Simons K. 1986. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol 102: 457–468.

    Article  PubMed  CAS  Google Scholar 

  25. Nagafuchi A, Schirayoshi Y, Okazaki K, Yasuda K, Takeichi M. 1987. Transformation of cell adhesion properties by exogeneously introduced E-cadherin cDNA. Nature 329: 340–343.

    Article  Google Scholar 

  26. McNeill H, Ozawa M, Kemler R, Nelson WJ. 1990. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309–316.

    Article  PubMed  CAS  Google Scholar 

  27. Behrens J, Mareel MM, Van Roy F, Birchmeier W. 1989. Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulinmediated cell-cell adhesion. J Cell Biol 108: 2435–2447.

    Article  PubMed  CAS  Google Scholar 

  28. Frixen U, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W. 1991. E-cadherin mediated cell-cell adhesion prevents invasiveness of human carcinoma cell lines. J Cell Biol 111: 173–185.

    Article  Google Scholar 

  29. Vleminckx K, Vakaet L, Mareel M, Fiers W, Van Roy F. 1991. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  PubMed  CAS  Google Scholar 

  30. Chen W, Öbrink B. 1991. Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol 114: 319–327.

    Article  PubMed  CAS  Google Scholar 

  31. Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW. 1991. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Diff 2: 365–372.

    PubMed  CAS  Google Scholar 

  32. Mareel MM, Behrens J, Birchmeier W, De Bruyne GK, Vleminckx K, Hoogewijs A, Fiers WC, Van Roy FM. 1991. Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int J Cancer 47: 922–928.

    Article  PubMed  CAS  Google Scholar 

  33. Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A. 1991. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533.

    Article  PubMed  CAS  Google Scholar 

  34. Mahoney PA, Weber U, Onofreckuk P, Biessmann H, Bryant PJ, Goodman CS. 1991. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67: 853–868.

    Article  PubMed  CAS  Google Scholar 

  35. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W. 1991. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51: 6328–6337.

    PubMed  CAS  Google Scholar 

  36. Moll M, Mitu M, Frixen UH, Birchmeiv W. 1993. Differential Loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol 143: 1731–1742.

    PubMed  CAS  Google Scholar 

  37. Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Tamura S, Iihara K, Doki Y, Hiran S, Takeichi M, Mori T. 1991. Expression of E-cadherin adhesion molecules in human cancers. Am J Pathol 139: 17–23.

    PubMed  CAS  Google Scholar 

  38. Shimoyama Y, Hirohashi S. 1991. Expression of E-and P-cadherin in gastric carcinomas. Cancer Res 51: 2185–2192.

    PubMed  CAS  Google Scholar 

  39. Tohma Y, Yamashima T, Yamashita J. 1992. Immunohistochemical localization of cell adhesion molecule epithelial cadherin in human arachnoid villi and meningiomas. Cancer Res 52: 1981–1987.

    PubMed  CAS  Google Scholar 

  40. Tsuda H, Zhang W, Shimosato Y, Yokota J, Terada J, Terada M, Sugimura T, Miyamura T, Hirohashi S. 1990. Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. Proc Natl Acad Sci USA 87: 6791–6794.

    Article  PubMed  CAS  Google Scholar 

  41. Natt E, Magenis RE, Zimmer J, Mansouri A, Scherer G. 1989. Regional assignment of the human loci for uvomorulin (UVO) and chymotrypsinogen (CTRB) with the help of two overlapping deletions on the long arm of chromosome 16. Cytogenet Cell Genet 50: 145–148

    Article  PubMed  CAS  Google Scholar 

  42. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB. 1990. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87: 8751–8755.

    Article  PubMed  CAS  Google Scholar 

  43. Sato T, Tanigami A, Yamakawa K, Akiyama F, Sakamoto G, Nakamura Y. 1990. Allelo-type of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 50: 7184–7189.

    PubMed  CAS  Google Scholar 

  44. Behrens J, Löwrick O, Klein-Hitpass L, Birchmeier W. 1991. The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci USA 88: 11495–11499.

    Article  PubMed  CAS  Google Scholar 

  45. Leask A, Rosenberg M, Vassar R, Fuchs E. 1990. Regulation of a human epidermal keratin gene: sequences and nuclear factors involved in keratinocyte-specific transcription. Genes Dev 4: 1985–1998.

    Article  PubMed  CAS  Google Scholar 

  46. Lüscher B, Eisenmann RN. 1990. New light on myc and myb. Part I. Myc. Genes Dev 4: 2025–2035.

    Google Scholar 

  47. Shimoyama Y, Hirohashi S, Hirano S, Noguchi M, Shimosato Y, Takeichi M, Abe O. 1989. Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res 49: 2128–2133.

    PubMed  CAS  Google Scholar 

  48. Eidelman S, Damsky CH, Wheelock MJ, Damjanov I. 1989. Expression of cell-cell adhesion glycoprotein cell-CAM 120/80 in normal human tissues and tumors. Am J Pathol 135: 101–110.

    PubMed  CAS  Google Scholar 

  49. Ozawa M, Baribault H, Kemler R. 1989. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8: 1711–1717.

    PubMed  CAS  Google Scholar 

  50. Ozawa M, Ringwald M, Kemler R. 1990. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci USA 87: 4246–4250.

    Article  PubMed  CAS  Google Scholar 

  51. Ozawa M, Kemler R. 1992. Molecular organization of the uvomorulin-catenin complex. J Cell Biol 116: 989–996.

    Article  PubMed  CAS  Google Scholar 

  52. Nagafuchi A, Takeichi M, Tsukita S. 1991. The 102kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65: 849–857.

    Article  PubMed  CAS  Google Scholar 

  53. Herrenknecht K, Ozawa M, Eckerskorn C, Lottspeich F, Lenter M, Kemler R. 1991. The uvomorulin-anchorage protein a catenin is a vinculin homologue. Proc Natl Acad Sci USA 88: 9156–9160.

    Article  PubMed  CAS  Google Scholar 

  54. McCrea P, Turck CW, Gumbiner B. 1991. A homolog of the armadillo protein in Drosophila (Plakoglobin) associated with E-cadherin. Science 254: 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  55. Kintner C. 1992. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell 69: 225–236.

    Article  PubMed  CAS  Google Scholar 

  56. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. 1993. In press. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature-sensitive v-src gene. J Cell Biol 120: 757–766.

    Article  PubMed  CAS  Google Scholar 

  57. Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M. 1992. Cadherin mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 118: 703–714.

    Article  PubMed  CAS  Google Scholar 

  58. Volberg T, Zick Y, Dror R, Sabanay I, Gilon C, Levitzki A, Geiger B. 1992. The effect of tyrosine-specific phosphorylation in the assembly of adherens-type junctions. EMBO J 11: 1733–1742.

    PubMed  CAS  Google Scholar 

  59. Shimoyama Y, Nagafuchi A, Fujita S, Gotoh M, Takeichi M, Tsukita S, Hirohashi S. 1992. Cadherin dysfunction in a human cancer cell line: possible involvement of loss of α-catenin expression in reduced cell-cell adhesiveness. Cancer Res 52: 1–5.

    Google Scholar 

  60. Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M. 1992. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70: 293–301.

    Article  PubMed  CAS  Google Scholar 

  61. Valles AM, Boyer B, Badet J, Tucker GC, Barritault, Thiery JP. 1990. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 87: 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  62. Jouanneau J, Gavrilovic J, Caruelie D, Jaye M, Moens G, Caruelie J-P, Thiery JP. 1991. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential. Proc Natl Acad Sci USA 88:2893–2897.

    Article  PubMed  CAS  Google Scholar 

  63. Sehgal PB, Tamm I. 1991. Interleukin-6 enhances motility of breast carcinoma cells. In Goldberg ID (ed), Cell Motility Factors. Birkhäuser Verlag: Basel, pp 178–193.

    Chapter  Google Scholar 

  64. Stoker M, Gherardi E, Perryman M, Gray J. 1987. Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327: 239–242.

    Article  PubMed  CAS  Google Scholar 

  65. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W. 1990. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111: 2097–2108.

    Article  PubMed  CAS  Google Scholar 

  66. Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y, Birchmeier W. 1991. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88: 7001–7005.

    Article  PubMed  CAS  Google Scholar 

  67. Bottaro DP, Rubins JS, Faletto DL, Chan AM-L, Kmiecik TE, Van de Woude GF, Aaronson SA. 1991. Identification of the hepatocyte growth factor receptor as the c-met proto-onkogene product. Science 251: 802–804.

    Article  PubMed  CAS  Google Scholar 

  68. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK, Birchmeier W, Comoglio P. 1991. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10: 2867–2878.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behrens, J., Birchmeier, W. (1994). Cell-cell adhesion in invasion and metastasis of carcinomas. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumorigenesis and Malignant Progression. Cancer Treatment and Research, vol 71. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2592-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2592-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6109-1

  • Online ISBN: 978-1-4615-2592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics