Skip to main content

Modulations of the epithelial phenotype during embryogenesis and cancer progression

  • Chapter
Mammary Tumorigenesis and Malignant Progression

Part of the book series: Cancer Treatment and Research ((CTAR,volume 71))

Abstract

In this chapter, we develop the idea that in order to be able to detach from the primary tumor, invade, and metastasize to distant organs, carcinoma cells must modify their adhesive status and change their cytoskeletal organization. Interestingly, such modifications of cell adhesion and communication systems have been shown to occur during embryogenesis and particulary during migratory process of epithelial-mesenchymal transition (EMT). These embryonic events therefore could represent the prototype of epithelial cell dispersion. Eventually, cells may switch back to a stable epithelial phenotype state that involves local growth and maintenance of this differentiated state, in coordination with the local environment. The delicate modulation of this equilibrium on a specific cell population represents a basic mechanism of embryogenesis. A similar mechanism of epithelial cell plasticity may apply to cancer cells. In this chapter, we first discuss this balance during a well-documented case of induced EMT in a bladder carcinoma. Then we expand the review to examples of EMT occurring during embryogenesis. Finally, we review cancer metastasis, with a special emphasis on breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vallés AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP. 1990. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 87: 1124–1128.

    PubMed  Google Scholar 

  2. Boyer B, Tucker GC, Vallés AM, Gavrilovic J, Thiery JP. 1989. Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line. Int J Cancer Suppl 4: 69–75.

    PubMed  CAS  Google Scholar 

  3. Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP. 1989. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 109: 1495–1509.

    PubMed  CAS  Google Scholar 

  4. Jouanneau J, Gavrilovic J, Camelie D, Jaye M, Moens G, Camelie JP, Thiery JP. 1991. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential. Proc Natl Acad Sci USA 88: 2893–2897.

    PubMed  CAS  Google Scholar 

  5. Tucker GC, Delouvee A, Jouanneau J, Gavrilovic J, Moens G, Vallés AM, Thiery JP. 1991. Amplification of invasiveness in organotypic cultures after NBT-II rat bladder carcinoma stimulation with in vitro scattering factors Invasion Metastasis 11: 297–30

    CAS  Google Scholar 

  6. Gavrilovic J, Moens G, Thiery JP, Jouanneau J. 1990. Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul, 1: 1003–1014.

    PubMed  CAS  Google Scholar 

  7. Boyer B, Thiery JP. 1993. Cyclic AMP distinguishes between two functions of acidic FGF in a rat bladder carcinoma cell line. J Cell Biol 120: 767–776.

    PubMed  CAS  Google Scholar 

  8. Tucker GC, Boyer B, Gavrilovic J, Emonard H, Thiery JP. 1990. Collagen-mediated dispersion of NBT-II rat bladder carcinoma cells. Cancer Res 50: 129–137.

    PubMed  CAS  Google Scholar 

  9. Boyer B, Dufour S, Thiery JP. 1992. E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Exp Cell Res 210: 347–357.

    Google Scholar 

  10. Vallés AM, Tucker GC, Thiery JP, Boyer B. 1990. Alternative patterns of mitogenesis and cell scattering induced by acidic FGF as a function of cell density in a rat bladder carcinoma cell line. Cell Regul 1: 975–988.

    PubMed  Google Scholar 

  11. Gilbert SF. 1991. Developmental Biology. Sinauer Associates: Sunderland, MA.

    Google Scholar 

  12. Kirschner M, Newport J, Gerhart J. 1985. The timing of early developmental events in Xenopus. Trends Genet 1: 41–47.

    Google Scholar 

  13. Katow H, Solursh M. 1980. Ultrastructure of primary mesenchyme cell ingression in the sea urchin Lytechinus pictus. J Exp Zool 213: 231–246.

    Google Scholar 

  14. Edelman GM, Gallin WJ, Delouvee A, Cunningham BA, Thiery JP. 1983. Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci USA 80: 4384–4388.

    PubMed  CAS  Google Scholar 

  15. Thiery JP, Boucaut JC, Yamada KM. 1985. Cell Migration in the Vertebrate Embryo. G.M. Edelman, Alan R. Liss: pp 167–193.

    Google Scholar 

  16. Katow H, Yamada KM, Solursh M. 1982. Occurence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo. Differentiation 22: 120–124.

    PubMed  CAS  Google Scholar 

  17. Erikson HP, Taylor HC. 1987. Hexabrachion proteins in embryonic chicken tissues and human tumors. J Cell Biol 105: 1387–1394.

    Google Scholar 

  18. Rosa F, Roberts AB, Daniepour D, Dart LL, Sporn MB, David IB. 1988. Mesoderm induction in amphibians: the role of TGF-β2-like factors. Science 239: 783–785.

    PubMed  CAS  Google Scholar 

  19. Slack JMW, Darlington BG, Heath JK, Godsave SF. 1987. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326: 197–200.

    PubMed  CAS  Google Scholar 

  20. Kimelman D, Kirschner M. 1987. Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51: 869–877.

    PubMed  CAS  Google Scholar 

  21. Zhou X, Sasaki H, Lowe L, Hogan BLM, Kuehn MR. 1993. Nodal is a novel TGFβ-like gene expressed in the mouse node during gastrulation. Nature 361: 543–546.

    PubMed  CAS  Google Scholar 

  22. Hemmati-Brivanlou A, Melton DA. 1992. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359: 609–614.

    PubMed  CAS  Google Scholar 

  23. Nusse R, Varmus HE. 1992. Wnt genes. Cell 69: 1073–1087.

    PubMed  CAS  Google Scholar 

  24. Niehrs C, Keller R, Cho KWY, DeRobertis EM. 1993. The homeobox gene goosecoid controls cell-migration in Xenopus embryos. Cell 72: 491–503.

    PubMed  CAS  Google Scholar 

  25. Hogan BLM, Thaller C, Eichele G. 1992. Evidence that Hensen’s node is a site of retinolc acid synthesis. Nature 359: 237–241.

    PubMed  CAS  Google Scholar 

  26. Lash JW, Seitz AW, Cheney CM, Ostrowsky D. 1984. On the role of fibronectin during the compaction stage of somitogenesis in the chick embryo. J Exp Zool 232: 197–206.

    PubMed  CAS  Google Scholar 

  27. Duband JL, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP. 1987. Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104: 1361–1374.

    PubMed  CAS  Google Scholar 

  28. Hay DA, Markwald RR, Fitzharris TP. 1984. Selected views of early heart development by scanning electron microscopy. Scan Electron Microsc 4: 1983–1993.

    Google Scholar 

  29. Mjaatvedt CH, Krug EL, Markwald RR. 1991. An antiserum (ESI) against a paniculate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture. Dev Biol 145: 219–230.

    PubMed  CAS  Google Scholar 

  30. Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. 1991. Epithelial-mesenchymal transformation of embryonic cardia endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci USA 88: 1516–1520.

    PubMed  CAS  Google Scholar 

  31. Potts JD, Runyan RB. 1989. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor β. Dev Biol 134: 392–401.

    PubMed  CAS  Google Scholar 

  32. Runyan RB, Potts JD, Sharma RV, Loeber CP, Chiang JJ, Bhalla RC. 1990. Signal transduction of a tissue interaction during embryonic heart development. Cell Regul 1: 301–313.

    PubMed  CAS  Google Scholar 

  33. Sweney LR, Shapiro B. 1970. Histogenesis of Swiss white mouse secondary palate from nine and one-half days to fifteen and one-half days in utero. I. Epithelial-mesenchymal relationships — light and electron microscopy. J Morphol 130: 435–449.

    PubMed  CAS  Google Scholar 

  34. Tyler MS, Koch WE. 1975. In vitro development of palatal tissues from embryonic mice. I. Differentiation of the secondary palate from 12-day mouse embryos. Anat Rec 182: 297–301.

    PubMed  CAS  Google Scholar 

  35. Fitchett JE, Hay ED. 1989. Medial edge epithelium transforms to mesenchyme after embryonic palatal shelves fuse. Dev Biol 131: 455–474.

    PubMed  CAS  Google Scholar 

  36. Schuler CF, Halpern DE, Guo Y, Sank AC. 1992. Medial edge epithelium fate traced by cell lineage analysis during epithelial-mesenchymal transformation in vivo. Development 154: 318–330.

    Google Scholar 

  37. Carette JM, Ferguson MWJ. 1992. The fate of medial edge epithelial cells during palatal fusion in vitro: an analysis by Dil labelling and confocal microscopy. Development 114: 379–388.

    PubMed  CAS  Google Scholar 

  38. Grobstein C. 1956. Trans-filter induction of tubulin in mouse meta-morphogenic mesenchyme. Exp Cell Res 10: 424–440.

    PubMed  CAS  Google Scholar 

  39. Ekblom P. 1981. Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol 91: 1–10.

    PubMed  CAS  Google Scholar 

  40. Klein G, Landegger M, Timpl R, Ekblom P. 1988. Role of laminin A chain in the development of epithelial cell polarity. Cell 55: 331–341.

    PubMed  CAS  Google Scholar 

  41. Vestweber D, Kemler R, Ekblom P. 1985. Cell-adhesion molecule uvomorulin during kidney development. Dev Biol 112: 213–221.

    PubMed  CAS  Google Scholar 

  42. Sariola HE, Aufderheide H, Bernhard H, Henke-Fahle S, Dippold W, Ekblom P. 1988. Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell 54: 235–245.

    PubMed  CAS  Google Scholar 

  43. Trelstadt RL, Hayashi A, Hayashi K, Donahoe P. 1982. The epithelial-mesenchymal interface of the male rat mullerian duct: Loss of basement membrane integrity and ductal regression. Dev Biol 92: 27–40.

    Google Scholar 

  44. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, Ninfa EG, Frey AZ, Gash DJ, Chow EP. 1986. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698.

    PubMed  CAS  Google Scholar 

  45. Duband JL, Volberg T, Sabanay, Thiery JP. 1988. Spatial and temporal distribution of adherens-junction associated adhesion molecule A-CAM during avian embryogenesis. Development 101: 325–344.

    Google Scholar 

  46. Dufour S, Duband JL, Humphries MJ, Obara M, Yamada KM, Thiery JP. 1988. Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. EMBO J 7: 2661–2671.

    PubMed  CAS  Google Scholar 

  47. Richardson D, Wyatt JI, Miloszewski KJ. 1992. Palliative removal of a giant polypoid ‘carcinosarcoma’ of the oesophagus by YAG laser photocoagulation of the tumour stalk. Gut 33: 1146–1148.

    PubMed  CAS  Google Scholar 

  48. Cho KJ, Myong NH, Choi DW, Jang JJ. 1990. Carcinosarcoma of the stomach. A case report with light microscopic, immunohistochemical, and electron microscopic study. Apmis 98: 991–995.

    CAS  Google Scholar 

  49. Iyomasa S, Kato H, Tachimori Y, Watanabe H, Yamaguchi H, Itabashi M. 1990. Carcinosarcoma of the esophagus: a twenty-case study. Jpn J Clin Oncol 20: 99–106.

    PubMed  CAS  Google Scholar 

  50. Eng J, Sabanathan S. 1992. Carcinosarcoma of the lung with gastrointestinal metastasis. Case report. Scand J Thorac Cardiovasc Surg 26: 161–162.

    CAS  Google Scholar 

  51. Meade P, Moad J, Fellows D, Adams CW. 1991. Carcinosarcoma of the lung with hypertrophic pulmonary osteoarthropathy. Ann Thorac Surg 51: 488–490.

    PubMed  CAS  Google Scholar 

  52. Engel AF, Groot G, Bellot S. 1991. Carcinosarcoma of the lung. A case-history of disseminated disease and review of the literature. Eur J Surg Oncol 17: 94–96.

    PubMed  CAS  Google Scholar 

  53. Ishida T, Tateishi M, Kaneko S, Yano T, Mitsudomi T, Sugimachi K, Hara N, Ohta M. 1990. Carcinosarcoma and spindle cell carcinoma of the lung: Clinicopathologic and immunohistochemical studies. J Thorac Cardiovasc Surg 100: 844–852.

    PubMed  CAS  Google Scholar 

  54. Summermann E, Huwer H, Seitz G. 1990. Carcinosarcoma of the lung, a tumour which has a poor prognosis and is extremely rarely diagnosed preoperatively. Thorac Cardiovasc Surg 38: 247–250.

    PubMed  CAS  Google Scholar 

  55. Cupples J, Wright J. 1990. An immunohistological comparison of primary lung carcinosarcoma and sarcoma. Pathol Res Pract 186: 326–329.

    PubMed  CAS  Google Scholar 

  56. Bloxham CA, Bennett MK, Robinson MC. 1990. Bladder carcinosarcomas: three cases with diverse histogenesis. Histopathology 16: 63–67.

    PubMed  CAS  Google Scholar 

  57. Chen KT. 1992. ‘Carcinosarcoma’ of the bladder. Arch Pathol Lab Med 116.

    Google Scholar 

  58. Sigal SH, Tomaszewski JE, Brooks JJ, Wein A, LiVolsi VA. 1991. Carcinosarcoma of bladder following long-term cyclophosphamide therapy. Arch Pathol Lab Med 115: 1049–1051.

    PubMed  CAS  Google Scholar 

  59. Giannopoulos A, Alivizatos G, Kyriakou V, Mitropoulos D, Dimopoulos MA. 1991. Carcinosarcoma of the bladder. Br J Urol 67: 106–107.

    PubMed  CAS  Google Scholar 

  60. Ishihara T, Kawano H, Takahashi M, Yokota T, Uchino F, Matsumoto N, Fukuyama N. 1990. Carcinosarcoma of the gallbladder. A case report with immunohistochemical and ultrastructural studies. Cancer 66: 992–997.

    CAS  Google Scholar 

  61. Vaccarello L, Curtin JP. 1992. Presentation and management of carcinosarcoma of the uterus. Oncology 6: 45–49.

    PubMed  CAS  Google Scholar 

  62. Silverberg SG, Major FJ, Blessing JA, Fetter B, Askin FB, Liao SY, Miller A. 1990. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol 9: 1–19.

    PubMed  CAS  Google Scholar 

  63. Lindboe CF, Mjnes J. 1992. Carcinosarcoma of prostate. Immunohistochemical and ultrastructural observations. Urology 40: 376–380.

    PubMed  CAS  Google Scholar 

  64. Kaneko Y, Yoshiki T, Fukumoto M, Oishi K, Yoshida O. 1992. Carcinosarcoma of the prostate. Urol Int 48: 105–107.

    PubMed  CAS  Google Scholar 

  65. Zenklusen HR, Weymuth G, Rist M, Mihatsch MJ. 1990. Carcinosarcoma of the prostate in combination with adenocarcinoma of the prostate and adenocarcinoma of the seminal vesicles. A case report with immunocytochemical analysis and review of the literature. Cancer 66: 998–1001.

    CAS  Google Scholar 

  66. Diaz NM, McDivitt RW, Wick MR. 1991. Pleiomorphic adenoma of the breast: a clinico-pathologic and immunohistochemical study of 10 cases. Hum Pathol 22: 1206–1214.

    PubMed  CAS  Google Scholar 

  67. Wargotz ES, Norris HJ. 1989. Metaplastic carcinomas of the breast. III. Carcinosarcoma. Cancer 64: 1490–1499.

    CAS  Google Scholar 

  68. Petersen QW, Ronnov-Jessen L, Howlett AR, Bissei M. 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells, Proc Nal Acad Sci USA 89: 9064–9068.

    CAS  Google Scholar 

  69. Alexiev B, Popov A. 1992. Carcinosarcoma of the breast. Immunohistochemical and ultrastructural studies. Zentralbl Pathol 138: 71–74.

    PubMed  CAS  Google Scholar 

  70. Carstens HB, Cooke JL. 1990. Mammary carcinosarcoma presenting as rhabdomyo-sarcoma: an ultrastructural and immunocytochemical study. Ultrastruct Pathol 14: 537–544.

    PubMed  CAS  Google Scholar 

  71. Bolton B, Sieunarine K. 1990. Carcinosarcoma: a rare tumour of the breast. Aust NZJ Surg 60: 917–919.

    CAS  Google Scholar 

  72. Sapino A, Papotti M, Sanfilippo B, Gugliotta P, Bussolati G. 1992. Tumor types derived from epithelial and myoepithelial cell lines of R3230AC rat mammary carcinoma. Cancer Res 52: 1553–1560.

    PubMed  CAS  Google Scholar 

  73. Kornitowski D, Sass B, Laub W. 1982. Rat mammary tumor classification: notes on comparative aspects. J Natl Cancer Inst 68: 147–156.

    Google Scholar 

  74. Rudland PS, Paterson FC, Monaghan P, Twiston Davies AC, Warburton MJ. 1986. Isolation and properties of rat cell lines morphologically intermediate between cultured mammary epithelial and myoepithelial-like cells. Dev Biol 113: 388–405.

    PubMed  CAS  Google Scholar 

  75. Sonnenberg A, Daams H, Calafat J, Hilgers J. 1986. In vitro differentiation and progression of mouse mammary tumor cells. Cancer Research 46: 5913–5922.

    PubMed  CAS  Google Scholar 

  76. Sanford KK, Dunn TB, Westfall BB, Covalesky AB, Dupree LT, Earle WR. 1961. Sarcomatous changes and maintenance of differentiation in long-term cultures of mouse mammary carcinomas. J Natl Cancer Inst 26: 1139–1193.

    PubMed  CAS  Google Scholar 

  77. Nakamura T. 1992. Structure and function of Hepatocyte Growth Factor, Prog Growth Factor Res 3: 67–85.

    Google Scholar 

  78. Kornilova ES, Taverna D, Hoeck W, Hynes N. 1992. Surface expression of erbB-2 protein is post-transcriptionally regulated in mammary epithelial cells by epidermal growth factor and by the culture density. Oncogene 7: 511–519.

    PubMed  CAS  Google Scholar 

  79. Gherardi E, Stoker M. 1991. Hepatocyte growth factor-scatter factor: Mitogen, motogen, and Met. Cancer Cells 3: 227–232.

    PubMed  CAS  Google Scholar 

  80. Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, Birchmeier W. 1992. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc Natl Acad Sci USA 89: 11574–11578.

    PubMed  CAS  Google Scholar 

  81. Kamalati T, Thirunavukarasu B, Wallace A, Holder N, Broks R, Nakamura T, Stoker G, Buluwela L. 1992. Down-regulation of scatter factor in MRC 5 fibroblasts by epithelial-derived cells. J Cell Sci 101: 323–332.

    PubMed  Google Scholar 

  82. McAvoy JW, Chamberlain CG. 1989. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107: 221–228.

    PubMed  CAS  Google Scholar 

  83. Hannigan G, Williams BR. 1986. Transcriptional reguation of interferon-responsive genes is closely linked to interferon receptor occupancy. EMBO J 5: 1607–1613.

    PubMed  CAS  Google Scholar 

  84. Goodman LV, Majack RA. 1989. Vascular smooth muscle cells express distinct transforming growth factor β receptor phenotypes as a function of cell density in culture. J Biol Chem 264: 5241–5244.

    PubMed  CAS  Google Scholar 

  85. Kazlauska A, DiCorleto PE. 1986. A comparison of the platelet derived growth factor-dependent tyrosine kinase activity in sparse and confluent fibroblasts. J Cell Physiol 126: 225–236.

    Google Scholar 

  86. Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE, Von E A, Chung LW. 1990. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA 87: 75–79.

    PubMed  CAS  Google Scholar 

  87. Gleave ME, Hsieh JT, Von EA, Chung LW. 1992. Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis. J Urol 147: 1151–1159.

    PubMed  CAS  Google Scholar 

  88. Kashishian A, Kazlauskas A, Cooper JA. 1992. Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J 11:1373-1382.

    Google Scholar 

  89. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Patnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    PubMed  CAS  Google Scholar 

  90. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: Crystal structures of the complexed and peptide free forms. Cell 72: 779–790.

    PubMed  CAS  Google Scholar 

  91. Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J. 1992. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358: 681–684.

    PubMed  CAS  Google Scholar 

  92. Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del RM, Mirda D, Williams LT. 1992. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358: 678–681.

    PubMed  CAS  Google Scholar 

  93. Hirobe T. 1992. Basic fibroblast growth factor stimulates the sustained proliferation of mouse epidermal melanoblasts in a serum-free medium in the presence of dibutyryl cyclic AMP and keratinocytes. Development 114: 435–445.

    PubMed  CAS  Google Scholar 

  94. Manske M, Feindler S, Bade EG. 1990. The epidermal growth factor-induced cell migration and expression of the 47,000 Mr secreted glycoprotein EIP-1 of rat liver epithelial cells are down-modulated by cyclic AMP. Eur J Cell Biol 52: 201–206.

    PubMed  CAS  Google Scholar 

  95. Seebacher T, Manske M, Kornblitt AR, Bade EG. 1988. Cellular fibronectin is induced by epidermal growth factor, but not by dexamethasone or cyclic AMP in rat liver epithelial cells. FEB 239: 113–116.

    CAS  Google Scholar 

  96. Lipton BH, Bensch KG, Karasek MA. 1991. Microvessel endothelial cell transdifferentiation: phenotypic characterization. Differentiation 46: 117–133.

    PubMed  CAS  Google Scholar 

  97. Reichmann E, Schwartz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M, Beug H. 1992. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71: 1103–1116.

    PubMed  CAS  Google Scholar 

  98. Taylor LK, Marshak DR, Landreth GE. 1993. Identification of a nerve growth factor-and epidermal growth factor-regulated protein kinase that phosphorylates the protooncogene product c-fos. Proc Natl Acac Sci USA 90: 368–372.

    CAS  Google Scholar 

  99. Vandenbunder B, Pardanaud L, Jaffredo T, Mirabel MA, Stehelin D, 1989. Complementary patterns of expression of c-ets 1, c-myb and c-myc in the blood-forming system of the chick embryo. Development 106: 265–274.

    Google Scholar 

  100. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, Aurias A, Thomas G. 1992. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359: 162–165.

    PubMed  CAS  Google Scholar 

  101. De Simone V, De Magistris LD, Lazzaro D, Gerstner J, Monaci P, Nicosia A, Cortese R. 1991. LFB3, a heterodimer-forming homeoprotein of the LFB1 family, is expressed in specialized epithelia. EMBO J 10: 1435–1443.

    PubMed  Google Scholar 

  102. Lazzaro D, De SV, De ML, Lehtonen E, Cortese R. 1992. LFB1 and LFB3 homeoproteins are sequentially expressed during kidney development. Development 114: 496–479.

    Google Scholar 

  103. Dressier GR, Douglass EC. 1992. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 89: 1179–1183.

    Google Scholar 

  104. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P. 1991. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10: 1135–1147.

    PubMed  CAS  Google Scholar 

  105. Pritchard JK, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D, et al. 1990. The candidate Wilms’s tumour gene is involved in genitourinary development. Nature 346: 194–197.

    Google Scholar 

  106. Rauscher FJ III, Morris JF, Tournay OE, Cook DM, Curran T. 1990. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Nature 1259–1261.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Savagner, P., Boyer, B., Valles, A.M., Jouanneau, J., Thiery, J.P. (1994). Modulations of the epithelial phenotype during embryogenesis and cancer progression. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumorigenesis and Malignant Progression. Cancer Treatment and Research, vol 71. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2592-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2592-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6109-1

  • Online ISBN: 978-1-4615-2592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics