Skip to main content

Ferric Iron Reduction and Iron Uptake in Eucaryotes: Studies with the Yeasts

Saccharomyces cerevisiae AND Schizosaccharomyces pombe

  • Chapter
Progress in Iron Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 356))

Abstract

Iron is essential for the growth of most cells since it participates in many key metabolic processes. However, under current environmental conditions, where oxygen is plentiful, most iron exists in the oxidized ferric or Fe(III) form. Ferric iron readily precipitates as highly insoluble ferric hydroxides at neutral pH, and these are not readily utilized by cells. The other biologically important oxidation state of iron is Fe(II), the ferrous form. Ferrous iron is much more soluble at neutral pH than ferric iron, but in the presence of oxygen it is efficiently oxidized to Fe(III). Thus, if organisms are to acquire enough iron to meet their metabolic requirements, they must evolve strategies for obtaining insoluble ferric iron from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beinfait, F., 1987, Biochemical basis of iron efficiency reactions in plants, in: “Iron Transport in Microbes, Plants and Animals,” G. Winkelmann, D. van der Helm, and J.B. Neilands, eds, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Crane, F.L., Roberts, H., Linnane, A.W., and Low, H., 1982, Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae, J Bioenerg Biomembr. 14: 191.

    Article  PubMed  CAS  Google Scholar 

  • Dancis, A., Klausner, R.D., Hinnebusch, A.G., and Barriocanal, J.G., 1990, Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae, Mol Cell Biol. 10: 2294.

    PubMed  CAS  Google Scholar 

  • Dancis, A., Roman, D.G., Anderson, G.J., Hinnebusch, A.G., and Klausner, R.D., 1992, Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron, Proc Natl Acad Sci USA. 89: 3869.

    Article  PubMed  CAS  Google Scholar 

  • de Jong, G., van Dijk, J.P., and van Eijk, H.G., 1990, The biology of transferrin, Clin Chim Acta 190: 1.

    Article  PubMed  Google Scholar 

  • Eide, D.J., Bridgham, J.T., Zhao, Z., and Mattoon, J.R., 1993, The vacuolar ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism, Mol Gen Genet. In press.

    Google Scholar 

  • Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D., and Kaplan, J., 1992, Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently, J Biol Chem. 267: 20774.

    PubMed  CAS  Google Scholar 

  • Eide, D., and Guarente, L., 1992, Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae, J Gen Microbiol. 138: 347.

    Article  PubMed  CAS  Google Scholar 

  • Emery, T., 1987, Reductive mechanisms of iron assimilation, in: “Iron Transport in Microbes, Plants and Animals,” G. Winkelmann, D. van der Helm, and J.B. Neilands, eds, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Estruch, F., and Carlson, M., 1990, Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defect in the SNF1 protein kinase, Nucl Acids Res. 18: 6959.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, G-F., and Rothstein, A., 1968, The transport of Zn2+, Co2+ and Ni2+ into yeast cells, Biochim Biophys Acta 163: 325.

    Article  PubMed  CAS  Google Scholar 

  • Karplus, P.A., Daniels, M.J., Herriot, J.R., 1991, Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family, Science 251: 60.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse, E., Crichton, R.R., and Labbe, P., 1990, Iron-reductases in the yeast Saccharomyces cerevisiae, Biochim Biophys Acta 1038: 253.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse, E., Horion, B., Labbe, P., and Hilger, F., 1991, The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP, Biochem J. 280: 545.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., and Labbe, P., 1989, Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae, J Gen Microbiol. 135: 257.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., Raguzzi, F., and Crichton, R.R., 1987, Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step, J Gen Microbiol 133: 3229.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., Simon, M., Klein, R., and Labbe, P., 1992, Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism, J Gen Microbiol. 138: 85.

    Article  PubMed  CAS  Google Scholar 

  • Melnick, L., and Sherman, F., 1990, Nucleotide sequence of the COR region: a cluster of six genes in the yeast Saccharomyces cerevisiae, Gene 87: 157.

    Article  PubMed  CAS  Google Scholar 

  • Nielands, J.B., Konopka, K., Schwyn, B., Coy, M., Francis, R.T., Paw, B.H., and Bagg, A., 1987, Comparative biochemistry of microbial iron assimilation, in: “Iron Transport in Microbes, Plants and Animals,” G. Winkelmann, D. van der Helm, and J.B. Neilands, eds, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Nunez, M.T., Cole, E.S., and Glass, J., 1983, The reticulocyte plasma membrane pathway of iron uptake as determined by the mechanism of α, α’-dipyridyl inhibition, J Biol Chem. 258: 1146.

    PubMed  CAS  Google Scholar 

  • Raguzzi, F., Lesuisse, E., and Crichton, R.R., 1988, Iron storage in Saccharomyces cerevisiae, FEBS Lett. 231: 253.

    Article  PubMed  CAS  Google Scholar 

  • Raja, K.B., Simpson, T.J., and Peters, T.J., 1992, Investigation of a role for reduction in ferric iron uptake by mouse duodenum, Biochim Biophys Acta 1135: 141.

    Article  PubMed  CAS  Google Scholar 

  • Roman, D.G., Dancis, A., Anderson, G.J., and Klausner, R.D., 1993, The fission yeast ferric reductase gene frp1 + is required for ferric iron uptake and encodes a protein that is homologous to the gp91 -phox subunit of the human NADPH phagocyte oxidoreductase, Mol Cell Biol. 13: 4342.

    PubMed  CAS  Google Scholar 

  • Segal, A.W., and Abo, A., 1993, The biochemical basis of the NADPH oxidase of phagocytes, Trends Biochem Sci. 18: 43.

    Article  PubMed  CAS  Google Scholar 

  • Segal, A.W., West, I., Wientjes, F., Nugent, J.H.A., Chavan, A.J., Haley, B., Garcia, R.C., Rosen, H., and Scrace, G., 1992, Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes, Biochem J. 284: 781.

    PubMed  CAS  Google Scholar 

  • Schnell, N., and Entian, K-D, 1991, Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators, Eur J Biochem. 200: 487.

    Article  PubMed  CAS  Google Scholar 

  • Schnell, N., Krems, B., and Entian, K-D., 1992, The PAR1 (YAP/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism, Curr Genet. 21: 269.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, G.J., Dancis, A., Roman, D.G., Klausner, R.D. (1994). Ferric Iron Reduction and Iron Uptake in Eucaryotes: Studies with the Yeasts. In: Hershko, C., Konijn, A.M., Aisen, P. (eds) Progress in Iron Research. Advances in Experimental Medicine and Biology, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2554-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2554-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6090-2

  • Online ISBN: 978-1-4615-2554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics