Skip to main content

Proposed Mechanisms for the Involvement of Lactoferrin in the Hydrolysis of Nucleic Acids

  • Chapter
Lactoferrin

Part of the book series: Advances in, Experimental Medicine and Biology ((AEMB,volume 357))

Abstract

Lactoferrin has recently been proposed to have ribonuclease activity in the absence of bound iron. We and others have demonstrated previously that lactoferrin interacts with DNA and will bind a number of transition metal ions via surface-exposed histidyl residues. In the present study, we investigated the possibility that surface-bound copper ions on lactoferrin may catalyze the production of active oxygen species responsible for the hydrolysis of nucleic acids. Purified lactoferrin (apo- and holo-forms) was incubated with CuCl2 in solution to obtain lactoferrin with surface binding sites saturated by Cu(II) ions. The lactoferrin-Cu(II) complex was purified by Bio-Gel P-6 chromatography columns and tested for hydrolytic activity against DNA and RNA as analyzed by agarose gel electrophoresis. Incubation of lactoferrin-Cu(II) complexes with supercoiled plasmid Bluescript II SK DNA led to the rapid formation of relaxed open circular or linear forms of DNA characterized by changed electrophoretic mobility. Lactoferrin with bound Cu(II) also caused extensive degradation of yeast tRNA molecules in the presence of hydrogen peroxide. Covalent modification of surface-exposed histidyl residues by carboxyethylation with diethylpyrocarbonate abolished the lactoferrin-associated hydrolytic activity. These results indicate that lactoferrin-bound Cu(II) can indeed facilitate the hydrolysis of DNA and RNA molecules. Copper-binding sites on lactoferrin appear to serve as centers for repeated production of hydroxyl radicals via a Fenton-type Haber-Weiss reaction. Enhanced nuclease activity associated with elevated local concentrations of lactoferrin would promote microbial degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisen P, and Listowsky I. 1980. Iron transport and storage protein. Ann Rev Biochem 49: 357–393.

    Article  PubMed  CAS  Google Scholar 

  2. Baggliolini MC, Masson DPL, and Heremans JF. 1970. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med 131: 559.

    Article  Google Scholar 

  3. Bagby Jr GC, Rigas VD, Bennet RM, Vandenbark AA. 1981. Interaction of lactoferrin, monocytes and T lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro. J Clin Invest 68: 56–63.

    Article  PubMed  CAS  Google Scholar 

  4. Sanchez L, Calvo M., and Brock JH. 1992. Biological role of lactoferrin. Arch Dis Child 67: 657–661.

    Article  PubMed  CAS  Google Scholar 

  5. Shongwe MS, Smith CA, Ainscough EC, Baker HA, Brodie AM, and Baker EN. 1992. Anion binding by human lactoferrin: results from crystallographic and physicochemical studies. Biochem. 31: 4451–4458.

    Article  CAS  Google Scholar 

  6. Ambruso DR and Johnston RB. 1981. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil paniculate fractions, and an enzymatic generating sysstem. J. Clin. Invest. 67: 352–360.

    Article  PubMed  CAS  Google Scholar 

  7. Winterbourn CC. 1981. Hydroxyl radical production in body fluids. Biochem. J. 198: 125–131.

    PubMed  CAS  Google Scholar 

  8. Gutteridge JMC, Paterson SK, Segal AW, and Halliwell B. 1981. Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199:259–261.

    PubMed  CAS  Google Scholar 

  9. Bannister JV, Bannister WH, Hill HAO, Thornalley PJ. 1982. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin. Biochim. Biophy. Acta. 715: 116–120.

    Article  CAS  Google Scholar 

  10. Winterbourn CC. 1983. Lactoferrin-catalyzed hydroxyl radical production. Biochem. J. 210: 15–19.

    PubMed  CAS  Google Scholar 

  11. Baldwin DA, Jenny ER, and Aisen P. 1984. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from Superoxide and hydrogen peroxide. J. Biol. Chem. 259: 13391–13394.

    PubMed  CAS  Google Scholar 

  12. Britigan BE, Hassett DJ, Rosen GM, Hamill DR, and Cohen MS. 1989. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Biochem. J. 204: 447–455.

    Google Scholar 

  13. Nakamura M. 1990. Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system. J Biochem 107: 395–399.

    PubMed  CAS  Google Scholar 

  14. Britigan BE, and Edeker BL. 1991. Pseudomonas and Neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. J Clin Invest 88: 1092–1102.

    Article  PubMed  CAS  Google Scholar 

  15. Britigan BE, Serody JS, Hayek MB, Charniga LM, Cohen MS. 1991. Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation. J. of Immunology 147: 4271–4277.

    CAS  Google Scholar 

  16. Cohen MS, Mao J. Rasmussen GT, Serody JS, and Britigan BE. 1992. Interaction of lactoferrin and lipopolysaccharide (LPS): effect on the antioxidant property of lactoferrin and the ability of LPS to prime human neutrophils for enhanced Superoxide formation. J. of Infectious Dis. 166: 1375–1378.

    Article  CAS  Google Scholar 

  17. Schultz PG, Taylor JS, Dervan PB. 1982. Design and synthesis of a sequence-specific DNA cleaving molecule. (Distamycin-EDTA) iron (II). J Am Chem Soc 104: 6861–6863.

    Article  Google Scholar 

  18. Furmanski P, Li Z-P, Fortuna MB, Swamy CVB, Das MR. 1989. Multiple molecular forms of human lactoferrin-identification of a class of lactoferrin that possess ribonuclease activity and lack iron-binding capacity. J Exp Med 170: 415–429.

    Article  PubMed  CAS  Google Scholar 

  19. Hutchens TW, and Yip T-T. 1991. Metal ligand-induced alterations in the surface structures of lactoferrin and transferrin probed by interaction with immobilized copper(II) ions. J. Chromatogr 536: 1–15.

    Article  PubMed  CAS  Google Scholar 

  20. Miller DM, Buettner GR, and Aust SD. 1990. Transition metals as catalysts of “autoxidation” reactions. Free Radical Biol. Med 8:95–108.

    Article  CAS  Google Scholar 

  21. Bennett RM, Davis J, Campbell S, Portnoff S. 1983. Lactoferrin binds to cell membrane DNA. Association of surface DNA with an enriched population of B cells and monocytes. J Clin Invest 71:611–618.

    Article  PubMed  CAS  Google Scholar 

  22. Sudar F, Csaba G, and Robenek H. 1986. Detection of localization and internalization of membrane DNA in the tetrahymena by the lactoferrin-colloidal gold technique. Acta Biologica Hangarica 37: 101–107.

    CAS  Google Scholar 

  23. Bennett RM, Merritt MM, and Gabor G. 1986. Lactoferrin binds to neutrophilic membrane DNA. British J. of Haematology. 63: 105–117.

    Article  CAS  Google Scholar 

  24. Hutchens TW, Maguson JS, Yip T-T. 1989. Interaction of human lactoferrin with DNA: one-step purification by affinity chromatography on single-stranded DNA-agarose. Pediatr Res 26: 618–622.

    PubMed  CAS  Google Scholar 

  25. Maniatis T, Fritsch EF, and Sambrook J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  26. Teuwissen B., Masson PL., Osinski P., and Heremans JF. 1972. Metal-combining properties of human lactoferrin. Eur. J. Biochem. 31: 230–245.

    Google Scholar 

  27. Ainscough EW, Brodie, AM, and plowman JE. 1979. The chromium, manganese, cobalt and copper complexes of human lactoferrin. Inorganic Chimica Acta, 33: 149–153.

    Article  CAS  Google Scholar 

  28. Ainscough EW, Brodie AM, McLachlan SJ, and Ritchie VS. 1983. Spectroscopic studies on copper(II) complexes of human lactoferrin. J. Inorganic Biochem. 18: 103–112.

    Article  CAS  Google Scholar 

  29. Smith CA, Anderson BF, Baker HM, and Baker EN. 1992. Metal substitution in transferrins: the crystal structure of human copper-lactoferrin at 2.1-Å resolution. Bioch. 31: 4523–4527.

    Google Scholar 

  30. Chevion M. 1988. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radical Biol. & Med. 5: 27–37.

    Article  CAS  Google Scholar 

  31. Joshi RR and Ganesh KN. 1992. Chemical cleavage of plasmid DNA by Cu(II), Ni(II) and Co(III) des-feral complexes. Biochem. Biophys. Res. Commun. 182: 588–592.

    Article  CAS  Google Scholar 

  32. Sagripanti J and Kraemer. 1989. Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol. Chem. 264: 1729–1734.

    PubMed  CAS  Google Scholar 

  33. Fusi P, Tedeschi G, Aliverti A, Ronchi S, Tortora P, and Guerritore A. 1993. Ribonucleases from the extreme thermophilic archaebacterium S. solfataricus. Eur. J. Biochem. 211: 305–310.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, XY., Hutchens, T.W. (1994). Proposed Mechanisms for the Involvement of Lactoferrin in the Hydrolysis of Nucleic Acids. In: Hutchens, T.W., Rumball, S.V., Lönnerdal, B. (eds) Lactoferrin. Advances in, Experimental Medicine and Biology, vol 357. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2548-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2548-6_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6087-2

  • Online ISBN: 978-1-4615-2548-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics