Skip to main content

New Directions in Organosilicon Surface Science

  • Chapter
Frontiers of Polymers and Advanced Materials

Abstract

A comprehensive review of new directions in organosilicon surface science has become an increasingly difficult challenge as the field continues to expand in many new and diverse ways. A personal view of some of the more important of these developments is shown in Table 1. From this list, six Dow Corning Corporation developments in the last few years are featured that have either progressed significantly since or were not adequately covered in previous reviews.1,2 These developments are: JKR approach to surface free energy of solids; 2D/3D nanocomposites; highly–fluorinated, low–surface–tension fluorosilicones; novel silicone surfactants; siloxane surface restructuring; silane coupling agent adhesion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Owen, Surface chemistry and applications in: “Siloxane Polymers,” S.J. Clarson and J.A. Semlyen, eds., Prentice–Hall, New York (1993).

    Google Scholar 

  2. M.J. Owen, Siloxane surface activity, in: “Silicon–Based Polymer Science,” J.M. Zeigler and F.W.G. Fearon, eds., Advances in Chemistry Series 224, American Chemical Society, Washington D.C. (1990).

    Google Scholar 

  3. J.N. Israelachvili, Techniques for direct measurements of forces between surfaces in liquids at the atomic scale, Chemtracts: Anal. Phys. Chem. 1:1 (1989).

    CAS  Google Scholar 

  4. K.L. Johnson, K. Kendall and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. Roy. Soc. London A324:301 (1971).

    Google Scholar 

  5. M.K. Chaudhury and G.M. Whitesides, Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives, Langmuir 7:1013 (1991).

    Article  CAS  Google Scholar 

  6. M.K. Chaudhury and G.M. Whitesides, Correlation between surface free energy and surface constitution, Science 255:1230 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. R.J. Good and L.A. Girifalco, A theory for estimation of surface and interfacial energies III. Estimation of surface energies of solids from contact angle data, J. Phys. Chem. 64:561 (1960).

    Article  CAS  Google Scholar 

  8. F.M. Fowkes, Attractive forces at interfaces, Ind. Eng. Chem. 56 (12):40 (1964).

    Article  CAS  Google Scholar 

  9. G.L. Wilkes, H–H. Huang and R.H. Glaser, New inorganic–organic hybrid materials through the sol–gel approach, in: “Silicon–Based Polymer Science,” J.M. Zeigler and F.W.G. Fearon, eds., Advances in Chemistry Series 224, Americal Chemical Society, Washington D.C. (1990).

    Google Scholar 

  10. T.E. Gentle and R.H. Baney, Silica/silicone nanocomposite films: a new concept in corrosion protection, Mat. Res. Soc. Symp. Proc. 274:115 (1992).

    Article  CAS  Google Scholar 

  11. R. Maoz and J. Sagiv, On the formation and structure of self–assembling monolayers, J. Colloid Interface Sci. 100:465(1984).

    Article  CAS  Google Scholar 

  12. S.R. Wasserman, Y-T. Tao and G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 5:1074 (1989).

    Article  CAS  Google Scholar 

  13. A. Ulman. “Ultrathin Organic Films,” Academic Press, San Diego, CA (1991).

    Google Scholar 

  14. J.D. Swalen, D.L. Allara, J.D. Andrade, E.A. Chandross, S. Garoff, J.N. Israelachvili, T.J. McCarthy, R. Murray, R.F. Pease, J.R. Rabolt, K.J. Wynne and H. Yu, Molecular monolayers and films, Langmuir 3:932 (1987).

    Article  CAS  Google Scholar 

  15. R. Maoz, L. Netzer, J. Gun and J. Sagiv, Self–assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties, J. Chim. Phys. Phys–Chim. Biol. 85:1059(1988).

    CAS  Google Scholar 

  16. E. Lindner and E. Arias, Surface free energy characteristics of polyfluorinated silane films, Langmuir 8:1195(1992).

    Article  CAS  Google Scholar 

  17. V. DePalma and N. Tillman, Friction and wear of self–assembled trichlorosilane monolayer films on silicon, Langmuir 5:868 (1989).

    Article  CAS  Google Scholar 

  18. W.D. Bascom, The wettability of fluoro– and chlorocarbon trialkoxysilane films adsorbed on glass and metal surfaces, J. Colloid Sci. 27:789 (1968).

    Article  CAS  Google Scholar 

  19. L.H. Lee, Wettability of functional polysiloxanes, in: “Adhesion Science and Technology,” Vol. 9B, Plenum Press, New York (1975).

    Google Scholar 

  20. E. Sacher, A comparison of γcrit and γ s for silane coatings, in: “Silylated Surfaces; Midland Macromolecular Monographs,” Vol. 7, Gordon and Breach, New York (1980).

    Google Scholar 

  21. G.M. Wieber, M.K. Chaudhury and J.S. Tonge, unpublished data presented at the 25th Silicon Symposium, USC, Los Angeles, CA, April 3–4 (1992).

    Google Scholar 

  22. M.J. Hunter, M.S. Gordon, A.J. Barry, J.F. Hyde, and R.D. Heidenreich, Properties of polyorgano– siloxane surfaces on glass, Ind. Eng. Chem. 39:1389 (1947).

    Article  CAS  Google Scholar 

  23. F J. Holly and M.J. Owen, Adsorption on modified silicone surfaces, in: “Physicochemical Aspects of Polymer Surfaces,” K. L. Mittal, ed., Vol. 2, Plenum Press, New York (1983).

    Google Scholar 

  24. A. Baszkin, M. M. Boissonade, J–E. Proust, S. Tchaliovska, L. Ter–Minassian–Saraga and G. Wajs, Silicone grafted with poly(vinyl pyrrolidone) for contact lenses. Surface properties and stability of thin tear film, J. Bioeng. 2:527 (1978).

    PubMed  CAS  Google Scholar 

  25. L.M. Lander, W.J. Brittain and M.D. Foster, A comparison of self–assembled monolayers on silicon and glass substrates, Polymer Preprints 33(1):1154 (1992).

    CAS  Google Scholar 

  26. J–E. Proust, E. Perez, Y. Sequi and D. Montalan, Formation and characterization of an ultrathin polysiloxane film onto mica, J. Colloid Interface Sci. 126:629 (1988).

    Article  CAS  Google Scholar 

  27. M.M. Doeff and E. Lindner, Structure and surface energy characteristics of a series of pseudo– perfluoroalkyl polysiloxanes, Macromols, 22:2951 (1989).

    Article  CAS  Google Scholar 

  28. H. Kobayashi and M.J. Owen, Surface tension of poly[(3,3,4,4,5,5,6,6,6 –nonafluoro– hexyl)methylsiloxane], Macromols 23:4929 (1990).

    Article  CAS  Google Scholar 

  29. Y.K. Kim, Poly(fluorosilicones), in: “Kirk–Othmer Encyclopedia of Chemical Technology,” 3rd ed., Vol 11, Wiley–Interscience, New York (1980).

    Google Scholar 

  30. H. Kobayashi and M.J. Owen, Surface tension of poly[(1H,1H,2H,2H– heptadecafluoro– decyl)methylsiloxane], Makromol Chem. 194:259(1993).

    Article  CAS  Google Scholar 

  31. N.L. Jarvis and W.A. Zisman, Fluorine compounds, organic-surface chemistry of fluorochemicals, in: “Kirk–Othmer Encyclopedia of Chemical Technology,” 2nd ed., Vol. 9, John Wiley and Sons, New York (1966).

    Google Scholar 

  32. M.J. Owen, Surface tension of polytrifluoropropylmethylsiloxane, J. Appl Polym. Sci. 35:895 (1988).

    Article  CAS  Google Scholar 

  33. K. Ishihara, R. Kogure and K. Matsui, Polymerization ability of perfluoroalkyloxy substituted styrene derivatives and their surface characteristics, Kobunshi Ronbunshu 45:653 (1988).

    Article  CAS  Google Scholar 

  34. J. Hopken and M. Moller, Low surface energy polystyrene, Macromols. 25:1461 (1992).

    Article  CAS  Google Scholar 

  35. H. Maki, Y. Horiguchi, T. Suga and S. Komori, Syntheses and properties of surfactants containing organometals VII. Cationic surfactants containing dimethylpolysiloxane, Yukagaku 19:1029 (1970).

    CAS  Google Scholar 

  36. G. Schmaucks, G. Sonnek, R. Wustneck, M. Herbst and M. Ramm, The effect of siloxanyl groups on the interfacial behavior of quaternary ammonium compounds, Langmuir 8:1724 (1992).

    Article  CAS  Google Scholar 

  37. G.L. F. Schmidt, Specific properties of silicone surfactants, in: “Industrial Applications of Surfactants,” D. R. Karsa, ed., Royal Soc. Chem. Spec. Publ. No. 59, (1987).

    Google Scholar 

  38. S.A. Snow, W.N. Fenton and M.J. Owen, Zwitterionic organofunctional siloxanes as aqueous surfactants: synthesis and characterization of betaine functional siloxanes and their comparison to sulfobetaine functional siloxanes, Langmuir 7:868 (1991).

    Article  CAS  Google Scholar 

  39. K. P. Ananthapadmanabhan, E. D. Goddard and P. Chandar, A study of the solution, interfacial and wetting properties of silicone surfactants, Colloids and Surfaces 44:281 (1990).

    Article  CAS  Google Scholar 

  40. M. He, Z. Lin, H.T. Davis, L.E. Scriven and R.M. Hill, Phase behavior and microstructure of nonionic heptamethyltrisiloxy–based surfactants in water, AIChE Annual meeting, Miami Beach, FA, 1992; and submitted to Langmuir.

    Google Scholar 

  41. H. W. Haesslin, H.F. Eicke and G. Riess, Dimethylsiloxane–ethylene oxide block copolymers, 1. Microphase separation of low segment mass copolymers and their compatibility with water and oil, Makromol Chem. 185:2625 (1984).

    Article  CAS  Google Scholar 

  42. M. Gradzielski, H. Hoffmann, P. Robisch, W. Ulbricht and B. Gruening, The aggregation behavior of silicone surfactants in aqueous solutions, Tenside, Surfactants, Deterg. 27:366 (1990).

    CAS  Google Scholar 

  43. R.M. Hill, M. He, Z. Lin, H.T. Davis and L.E. Scriven, Liquid crystalline phases of siloxane surfactants, 66 th Colloid and Surface Science Symposium, Morgantown, W. Va. 1992; and submitted to Langmuir.

    Google Scholar 

  44. V.M. Rudoy, Hydrolysis of polydimethylsiloxane monolayers on water surfaces, in: “Chemistry and Technology of Silicon and Tin,” V.G. Kumar Das, N.S. Weng and M. Gielen, eds., Oxford University Press, New York (1992).

    Google Scholar 

  45. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey and D. Johnson, On the aging of oxygen plasma–treated polydimethylsiloxane surfaces, J. Colloid Interface Sci. 137:11 (1990).

    Article  CAS  Google Scholar 

  46. J.R. Hollahan and G.L. Carlson, Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas, Appl. Polym. Sci. 14:2499 (1970).

    Article  CAS  Google Scholar 

  47. M.J. Owen, T.M. Gentle, T. Orbeck and D.E. Williams, Dynamic wettability of hydrophobic polymers, in: “Polymer Surface Dynamics,” J. D. Andrade, ed., Plenum Press, New York, (1988).

    Google Scholar 

  48. Y. Ikada, T. Matsunaga and M. Suzuki, Plasma–treated polymers, Nippon Kagaku Kaishi 6:1079(1985).

    Article  Google Scholar 

  49. C–L. Lee and G.R. Homan, Silicone elastomer protective coatings for high voltage insulators, in: Annual Report 81CHI668–3, Conference on Electrical Insulation and Dielectric Phenomena, IEEE (1981).

    Google Scholar 

  50. P.M. Triolo and J.D. Andrade, Surface modification and evaluation of some commonly used catheter materials. I. Surface properties, J. Biomed. Mater. Res. 17:129 (1983).

    Article  PubMed  CAS  Google Scholar 

  51. P.J. Smith, M.J. Owen, P.H. Holm, and G.A. Toskey, Surface studies of corona–treated silicone rubber high–voltage insulation, Proc. IEEE CEIDP Conf. Victoria, BC, Canada, (1992).

    Google Scholar 

  52. T. Kataoka and S. Ueda, Viscosity–molecular weight relationship for polydimethylsiloxane, J. Polym. Sci., Part B, 4:317 (1966).

    Article  CAS  Google Scholar 

  53. S.R. Holmes–Farley, “Surface–Modified Polyethylene Films,” Ph.D. Thesis, Harvard University (1986).

    Google Scholar 

  54. E.P. Plueddemann, “Silane Coupling Agents,” 2nd Ed., Plenum Press, New York (1991).

    Google Scholar 

  55. N.G. Cave and A.J. Kinloch, Self–assembling monolayer silane films as adhesion promoters, Polymer 33:1162(1992).

    Article  CAS  Google Scholar 

  56. A. Kaul, N.H. Sung, I.J. Chin and C.S. P. Sung, Mechanistic studies of adhesion promotion by γ–aminopropyl triethoxy silane in α–Al2O3/polyethylene joint, Polymer Engng. Sci. 22:637 (1982).

    Article  Google Scholar 

  57. D. Wang, F.R. Jones and P. Denison, A TOF SIMS study of the incorporation of aluminum into the silane coating on E–glass fibers, Catalysis Today 12:375 (1992).

    Article  Google Scholar 

  58. T.E. Gentle, R.G. Schmidt, B.M. Naasz, A.J. Gellman and T.M. Gentle, Organofunctional silanes as adhesion promoters: direct characterization of the polymer/silane interphase, J. Adhesion Sci. Technol. 6:307 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Owen, M.J. (1994). New Directions in Organosilicon Surface Science. In: Prasad, P.N. (eds) Frontiers of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2447-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2447-2_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6040-7

  • Online ISBN: 978-1-4615-2447-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics