Skip to main content

Part of the book series: The Mineralogical Society Series ((MIBS,volume 6))

Abstract

Electron probe microanalysis makes use of the X-ray spectrum emitted by a solid sample bombarded with a focused beam of electrons to obtain a localized chemical analysis. All elements from atomic number 4 (Be) to 92 (U) can be detected in principle, though not all instruments are equipped for ‘light’ elements (Z < 10). Qualitative analysis involves the identification of the lines in the spectrum and is fairly straightforward owing to the simplicity of X-ray spectra. Quantitative analysis (determination of the concentrations of the elements present) entails measuring line intensities for each element in the sample and for the same elements in calibration standards of known composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albee, A.L. and Chodos, A.A. (1970) Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems. Am. Mineral., 55, 491–501.

    Google Scholar 

  • Albee, A.L. and Ray, L.A. (1970) Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates. Anal. Chem., 42, 1408–14.

    Article  Google Scholar 

  • Armstrong, J.T. (1988a) Bence-Albee after 20 years: review of the accuracy of α-factor correction procedures for oxide and silicate minerals, in Microbeam Analysis — 1988 (ed. D.E. Newbury), San Francisco Press, San Francisco, pp. 469–76.

    Google Scholar 

  • Armstrong, J.T. (1988b) Accurate quantitative analysis of oxygen and nitrogen with a W/Si multilayer crystal, in Microbeam Analysis — 1988 (ed. D.E. Newbury), San Francisco Press, San Francisco, pp. 301–4.

    Google Scholar 

  • Bastin, G.F. and Heijligers, H.J.M. (1990) Quantitative electron probe microanalysis of ultralight elements (boron-oxygen). Scanning, 12, 225–36.

    Article  Google Scholar 

  • Bastin, G.F., van Loo, F.J.J. and Heijligers, H.J.M. (1984) Evaluation and use of Gaussian φ(pz) curves in quantitative electron probe microanalysis: a new optimization. X-ray Spectrom., 13, 91–7.

    Article  Google Scholar 

  • Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol., 76. 382–403.

    Article  Google Scholar 

  • Castaing, R. (1951) PhD Thesis. University of Paris.

    Google Scholar 

  • Doyle, B.L., Chambers. W.F., Christensen, T.M., et al. (1979) Sin θ settings for X-ray spectrometers. Atomic Data Nuclear Data Tab., 24, 373–493.

    Article  Google Scholar 

  • Dunham, A.C. and Wilkinson, F.C.F. (1978) Accuracy, precision and detection limits of energy-dispersive electron-microprobe analyses of silicates. X-ray Spectrom., 7. 50–5.

    Article  Google Scholar 

  • Heinrich, K.F.J. (1987) Mass absorption coefficients for electron probe microanalysis. in Proc. 11th ICXOM (eds J.D. Brown and R.H. Packwood), University of Western Ontario, London, Ontario, pp. 67–119.

    Google Scholar 

  • Jenkins, R., Manne, R., Robin, J. and Senemaud, C. (1991) Part VIII. Nomenclature system for X-ray spectroscopy. Pure and Applied Chemistry, 63, 735–46.

    Article  Google Scholar 

  • Love, G., Sewell, D.A. and Scott, V.D. (1984) An improved absorption correction for quantitative analysis. J. Physique, 45 (coll. C2), 21–4.

    Google Scholar 

  • McGee J.J., Slack, J.F. and Herrington, C.R. (1991) Boron analysis by electron microprobe using MoB4C layered synthetic crystals. Am. Mineral., 76, 681–4.

    Google Scholar 

  • Nash, W.P. (1992) Analysis of oxygen with the electron microprobe: applications to hydrated glasses and minerals. Amer. Mineral., 77, 453–7.

    Google Scholar 

  • O’Nions, R.K. and Smith, D.G.W. (1971) Investigations of the LII.III X-ray emission spectra of Fe by electron microprobe. Part 2. The Fe LII.III spectra of Fe and Fe-Ti oxides. Amer. Mineral., 56, 1452–63.

    Google Scholar 

  • Packwood, R.H. and Brown, J.D. (1981) A Gaussian expression to describe φ(pz) curves for quantitative electron probe microanalysis. X-ray Spectrom., 10, 138–46.

    Article  Google Scholar 

  • Philibert, J. (1963) A method of calculating the absorption correction in electron-probe microanalysis, in X-ray Optics and X-ray Microanalysis (eds H.H. Pattee, V.E. Cosslett and A. Engström), Academic Press, New York, pp. 379–92.

    Google Scholar 

  • Potts, P.J. and Tindle, A.G. (1989) Analytical characteristics of a multilayer dispersion element (2d = 60 Å) in the determination of fluorine in minerals by electron microprobe. Mineral Mag., 53, 357–62.

    Article  Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1987) Basic expression of ‘PAP’ computation for quantitative EPMA, in Proc. 11th ICX0M (eds J.D. Brown and R.H. Packwood), University of Western Ontario, London, Ontar o., pp. 249–53.

    Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1988) A simplified version of the ‘PAP’ model for matrix corrections in EPMA, in Microbeam Analysis — 1988 (ed. D.E. Newbury), San Francisco Press, San Francisco, pp. 315–18.

    Google Scholar 

  • Reed, S.J.B. and Ware, N.G. (1975) Quantitative electron microprobe analysis of silicates using energy-dispersive X-ray spectrometry. J. Petrol., 16, 499–519.

    Google Scholar 

  • Rock, N.M.S. and Carroll, G.W. (1990) MINTAB: a general purpose mineral recalculation and tabulation program for Mac computers. Am. Mineral., 75, 424–30.

    Google Scholar 

  • Roeder, P.L. (1985) Electron-microprobe analysis of minerals for rare-earth elements: use of calculated peak-overlap corrections, Can. Mineral., 23, 263–71.

    Google Scholar 

  • Ware, N.G. (1991) Combined energy-dispersive-wavelength-dispersive quantitative electron probe analysis, X-ray Spectrom., 20, 73–9.

    Article  Google Scholar 

Further reading

  • Agarwal, B.K. (1991) X-ray Spectroscopy, 2nd edn. Springer-Verlag, Berlin.

    Google Scholar 

  • Goldstein, J.I., Newbury, D.E., Echlin, P. et al. (1992) Scanning Electron Microscopy and Analysis, 2nd edn. Plenum Press, New York.

    Google Scholar 

  • Heinrich, K.F.J. (1981) Electron Beam X-ray Micro analysis. Van Nostrand Rheinhold, New York.

    Google Scholar 

  • Heinrich, K.F.J. and Newbury, D.E. (eds) (1991) Electron Probe Quantitation, Plenum Press, New York.

    Google Scholar 

  • Potts, P.J. (1987) A Handbook of Silicate Rock Analysis, Blackie, Glasgow.

    Google Scholar 

  • Reed, S.J.B. (1993) Electron Microprobe Analysis, 2nd edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Reimer, L. (1985) Scanning Electron Microscopy, Springer-Verlag, Berlin.

    Google Scholar 

  • Russ, J.C. (1984) Fundamentals of Energy Dispersive X-ray Analysis, Butterworths, London.

    Google Scholar 

  • Scott, V.D. and Love, G. (1994) Quantitative Electron Probe Microanalysis, 2nd edn., Ellis Horwood, Chichester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 The Mineralogical Society

About this chapter

Cite this chapter

Reed, S.J.B. (1995). Electron probe microanalysis. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds) Microprobe Techniques in the Earth Sciences. The Mineralogical Society Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2053-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2053-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-55100-0

  • Online ISBN: 978-1-4615-2053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics