Skip to main content

The Role of the Cell Cycle in HIV-1 Infection

  • Chapter
Cell Activation and Apoptosis in HIV Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 374))

Summary

Infection of quiescent lymphocytes with human immunodeficiency virus type 1 (HIV-1) does not result in production of progeny virus. We have previously reported that although HIV-1 can enter quiescent lymphocytes with high efficiency, the reverse transcription process does not go to completion. This results in a viral genome which is composed partly of viral RNA and partly of viral DNA. If a mitogenic signal is applied shortly after infection to a cell harboring such a structure, reverse transcription can go to completion and progeny virus will be produced. However, this partially reverse transcribed structure is extremely labile, and the efficiency of virus rescue decreases rapidly, with increasing times between infection and activation. Our laboratory is using inhibitors of cell activation to identify at which stage of the cell cycle this block to reverse transcription occurs. We have found that agents that arrest the cell in the late G1 phase of the cell cycle do not alter the ability of the virus to complete reverse transcription. However, agents that inhibit activation of the cell by blocking transition through G1 prevent completion of reverse transcription. It thus appears that immunosuppression of the target cell may be a means of preventing productive infection of the cell.

We have also been using the severe combined immunodeficient mouse implanted with human tissue (SCID-hu) as an in vivo model to study HIV-1 pathogenic properties. When human fetal thymic implants in these animals are infected by HIV-1, profound depletion of CD4-bearing human thymocytes is seen. The depletion appears to initially be more pronounced in the immature CD4/CD8 double-positive thymocyte subset than in the more mature CD4+/CD8- subset. The reason for this preferential cell death is currently under investigation; however, this suggests that factors involved in cell differentiation may play a role in the pathogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Temin HM. 1967. Studies on carcinogenesis by avian sarcoma viruses. V. Requirement for new DNA synthesis and for cell division. J. Cell. Physiol. 69:53–64.

    Article  CAS  Google Scholar 

  2. Folks T, Kelly J, Benn S, Kinter A, Justement J, Gold J, Redfield R, Sell KW, Fauci AS. 1986. Susceptibility of normal human lymphocytes to infection with HTLV III/LAV. J. Immunol. 136:4049–53.

    PubMed  CAS  Google Scholar 

  3. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. 1990. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9:1551–60.

    PubMed  CAS  Google Scholar 

  4. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen ISY. 1990. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 61:213–2.

    Article  PubMed  CAS  Google Scholar 

  5. Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC. 1986. Long term cultures of HTLV III infected cells: A model of cytopathology of T cell depletion in AIDS. Science 231:850–3.

    Article  PubMed  CAS  Google Scholar 

  6. Zack JA, Cann AJ, Lugo JP, Chen ISY. 1988. AIDS virus production from infected peripheral blood T cells following HTLV I-induced mitogenic stimulation. Science 240:1026–9.

    Article  PubMed  CAS  Google Scholar 

  7. Zack JA, Haislip A, Krogstad P, Chen ISY. 1992. Incompletely reverse transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retrovirus life cycle. J. Krol. 66:1717–25.

    CAS  Google Scholar 

  8. Gao WY, Cara A, Gallo RC, Lori F. 1993. Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. Proc. Natl. Acad. Sci. USA 90:8925–8.

    Article  PubMed  CAS  Google Scholar 

  9. Trono D. 1992. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J. Yrol. 66:4893–900.

    CAS  Google Scholar 

  10. Lori F, di Marzo Veronese F, de Vico AL, Lusso P, Reitz MS, Jr, Gallo RC. 1992. Viral DNA carried by human immunodeficiency virus type 1 virions. J. Viral. 1992;66:5067–74.

    CAS  Google Scholar 

  11. O’Brien WA, Namazi A, Kalhor H, Mao S-h, Zack JA, Chen ISY. 1994. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J. Virol. 68:1258–63.

    PubMed  Google Scholar 

  12. Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M. 1991. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254:423–7.

    Article  PubMed  CAS  Google Scholar 

  13. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl. Acad. Sci. USA 89:6580–4.

    Google Scholar 

  14. Schreiber SL. 1992 Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70:365–8.

    Article  PubMed  CAS  Google Scholar 

  15. Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT. 1993. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–62.

    Article  PubMed  CAS  Google Scholar 

  16. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS. 1993. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–8.

    Article  PubMed  CAS  Google Scholar 

  17. Joshi VV, Oleske JM, Saad S, Gadol C, Conner E, Bobila R, Minnefor AB. 1986. Thymus biopsy in children with acquired immunodeficiency syndrome. Arch. Pathol. Lab. Med. 110:837–42.

    PubMed  CAS  Google Scholar 

  18. Rosenzweig M, Clark DP, Gaulton GN. 1993. Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 7:1601–5.

    Article  PubMed  CAS  Google Scholar 

  19. Mano H, Chermann JC. 1991. Fetal human immunodeficiency virus type 1 infection of different organs in the second trimester. AIDS Res. Human Retroviruses 7:83–8.

    CAS  Google Scholar 

  20. Papiernik M, Brossard Y, Mulliez N, Roume J, Brechot C, Barin F, Goudeau A, Bach J-F, Griscelli C, Henrion R, Vazeux R. 1992. Thymic abnormalities in fetuses aborted from human immunodeficiency virus type 1 seropositive women. Pediatrics 89:297–301.

    PubMed  CAS  Google Scholar 

  21. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. 1988. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–9.

    Article  PubMed  CAS  Google Scholar 

  22. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. 1990. Long-term human hematopoiesis in the SCID-hu mouse. J. Exp. Med. 172:1055–63.

    Article  PubMed  CAS  Google Scholar 

  23. Aldrovandi GM, Feuer G, Gao L, Kristeva M, Chen ISY, Jamieson B, Zack JA. 1993. HIV-1 infection of the SCID-hu mouse: An animal model for virus pathogenesis. Nature 363:732–36.

    Article  PubMed  CAS  Google Scholar 

  24. Bonyhadi ML, Rabin L, Salimi S, Brown DA, Kosek J, McCune JM, Kaneshima H. 1993. HIV induces thymus depletion in vivo. Nature 363:728–36.

    CAS  Google Scholar 

  25. Jamieson BD, Aldrovandi GM, Planelles V, Jowett JBM, Gao L, Bloch LM, Chen ISY, Zack JA. 1994. Requirement of HIV-1 nef for in vivo replication and pathogenesis. J. Virol. 68:3478–85.

    PubMed  CAS  Google Scholar 

  26. Stanley SK, McCune JM, Kaneshima H, Justement JS, Sullivan M, Boone E, Baseler M, Adelsberger J, Bonyhadi M, Orenstein J, Fox CH, Fauci AS. 1993. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J. Exp. Med. 178:1151–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zack, J.A. (1995). The Role of the Cell Cycle in HIV-1 Infection. In: Andrieu, JM., Lu, W. (eds) Cell Activation and Apoptosis in HIV Infection. Advances in Experimental Medicine and Biology, vol 374. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1995-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1995-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5823-7

  • Online ISBN: 978-1-4615-1995-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics