Skip to main content

Reflex Reversal in the Walking Systems of Mammals and Arthropods

  • Chapter
Neural Control of Movement

Summary

Recent investigations on cats, crabs, crayfish and insects have demonstrated that the reflex influence from some leg proprioceptors is reversed during locomotor activity. A general feature of this phenomenon is that the reversed reflex acts to reinforce the activity of motoneurones active during the stance phase of locomotion. In the cat, feedback from extensor group Ib afferents (arising from the force-sensitive Golgi tendon organs, GTOs) has an excitatory action on extensor motoneurones. This action of the GTOs during stance may function to regulate the level of activity in extensor motoneurones according to the load carried by the limb and/or to prevent the initiation of flexor burst activity when the extensor muscles are loaded. In arthropods, the reinforcing action of feedback from velocity sensitive afferents (chordotonal organs in crustacea and insects, and muscle receptor organs in crustacea) may regulate the speed of shortening of load bearing muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In Handbook of Physiology. The Nervous System, Sect.l, Vol. 2. Edited by J.M. Brookhart, V.B. Mountcastle, V.B. Brooks and S.R. Geiger. American Physiological Society, Bethesda. pp. 509–595

    Google Scholar 

  • Barnes, W.J., Spirito, C.P. & Evoy, W.H. (1972) Nervous control of walking in the crab Cardisoma guanhumi. II. Role of resistance reflexes in walking. Zeitschrift vergl Physiologie 76, 16–31

    Google Scholar 

  • Bässler, U. (1988) Functional principles of pattern generation for walking movements of stick insect forelegs: the role of femoral chordotonal organ afferences. Journal of Experimental Biology 136, 125–147

    Google Scholar 

  • Conway, B.A., Hultborn, H. & Kiehn, O. (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research 68, 643–656

    Article  CAS  Google Scholar 

  • Cruse, H. (1985) Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology 116, 343–355

    Google Scholar 

  • DiCaprio, R.A. & Clarac, F. (1981) Reversal of a walking leg reflex elicited by a muscle receptor. Journal of Experimental Biology 90, 197–203

    Google Scholar 

  • Dietz, V., Schmidtbleicher, H.R. & Noth, J. (1979) Neuronal mechanisms of human locomotion. Journal of Neurophysiology 42, 1212–1223

    PubMed  CAS  Google Scholar 

  • Duysens, J.D. & Pearson, K.G. (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Experimental Brain Research 187, 31–332

    Google Scholar 

  • Duysens, J.D. & Tax, A.A.M. (1994) Interlimb reflexes during gait in cat and man. In: Interlimb Coordination: Neural, Dynamical, and Cognitive Constrains. Edited by S.P. Swinnen, H. Heuer, J. Massion and P. Casaer. Academic Press, New York. In press.

    Google Scholar 

  • Duysens, J.D., Tax A.A.M., Trippel, M. & Dietz, V. (1992) Phase-dependent reversal of reflexly induced movements during human gait. Experimental Brain Research 90, 404–414

    Article  CAS  Google Scholar 

  • Eccles, J.C., Eccles, R.M. & Lundberg, A. (1957a) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. Journal of Physiology 137, 22–50

    PubMed  CAS  Google Scholar 

  • Eccles, J.C., Eccles, R.M. & Lundberg, A. (1957b) Synaptic actions on motoneurones caused by impulses in golgi tendon organ afferents. Journal of Physiology 138, 227–252

    PubMed  CAS  Google Scholar 

  • Edgley, S.A. & Jankowska, E. (1987) An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. Journal of Physiology 389, 647–674

    PubMed  CAS  Google Scholar 

  • El Manira, A., DiCaprio, R.A., Cattaert, D. & Clarac, F. (1991) Monosynaptic interjoint reflexes and their central modulation during fictive locomotion in crayfish. European Journal of Neuroscience 3, 1219–1231

    Article  PubMed  Google Scholar 

  • Gossard, J.P., Brownstone, R.M., Barajon, I. & Hultborn, H. (1994) Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Experimental Brain Research 98, 213–228.

    Article  CAS  Google Scholar 

  • Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, Sect.1, Vol. 2. The Nervous System, Motor Control, Edited by V.B. Brooks, American Physiological Society, Bethesda. pp. 1179–1236

    Google Scholar 

  • Grillner, S. & Rossignol, S. (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Research 144, 411–414

    Article  PubMed  CAS  Google Scholar 

  • Head, S.I. & Bush, B.M.H. (1991) Proprioceptive reflex interactions with central motor rhythms in the isolated thoracic ganglion of the shore crab. Journal of Comparative Physiology 168, 445–459

    Article  Google Scholar 

  • Jankowska, E. (1992) Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology 38, 335–378

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, E. & McCrea, D.A. (1983) Shared reflex pathways from Ib tendon organ afferents and Ia muscle spindle afferents in the cat. Journal of Physiology 338, 99–111

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Malmgren, K. & Schomburg, E.D. (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. Journal of Physiology 265, 763–780

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Malmgren, K. & Schomburg, E.D. (1978) The role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. Journal of Physiology 284, 327–343

    PubMed  CAS  Google Scholar 

  • McCrea, D.A. (1992) Can sense be made of spinal interneurone circuits? Behavioral and Brain Sciences 15, 633–643

    Google Scholar 

  • Pearson, K.G. (1972) Central programming and reflex control of walking in the cockroach. Journal of Experimental Biology 56, 321–330

    Google Scholar 

  • Pearson, K.G. & Collins, D.F. (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. Journal of Neurophysiology 70, 1009–1017

    PubMed  CAS  Google Scholar 

  • Pearson, K.G., Ramirez, J.M. & Jiang, W. (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Experimental Brain Research 90, 557–566

    Article  CAS  Google Scholar 

  • Rossignol, S., Lund, J.P. & Drew, T. (1988) The role of sensory inputs regulating pattern of rhythmical movements in higher vertebrates. In Neural Control of Rhythmic Movements in Vertebrates, Edited by A. Cohen, S. Rossignol and S. Grillner. John Wiley & Sons, New York. pp. 201–283

    Google Scholar 

  • Severin, F.V. (1970) The role of gamma motor system in the activation of the extensor alpha-motoneurones during controlled locomotion. Biophysics 14, 1138–1145

    Google Scholar 

  • Sillar, K.T. (1989) Synaptic modulation of cutaneous pathways in the vertebrate spinal cord. Seminars in Neuroscience 1, 45–54

    Google Scholar 

  • Sillar, K.T. (1991) Spinal pattern generation and sensory Gating mechanisms. Current Opinion in Neurobiology 1, 583–589

    Article  PubMed  CAS  Google Scholar 

  • Sillar, K.T., Skorupski, P., Elson, R.C. & Bush, B.M.H. (1986) Two identified afferent neurones entrain a central locomotor rhythm generator. Nature 323, 440–443

    Article  Google Scholar 

  • Skorupski, P. & Sillar, K.T. (1986) Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. Journal of Neurophysiology 55, 689–695

    PubMed  CAS  Google Scholar 

  • Yang, J.F., Stein, R.B. & James, K.B. (1991) Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research 87, 679–687.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pearson, K.G. (1995). Reflex Reversal in the Walking Systems of Mammals and Arthropods. In: Ferrell, W.R., Proske, U. (eds) Neural Control of Movement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1985-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1985-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5818-3

  • Online ISBN: 978-1-4615-1985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics