Skip to main content

Retinoic Acid Synthesizing Enzymes in the Embryonic and Adult Vertebrate

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 5

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 372))

Abstract

The oxidation of retinaldehyde to retinoic acid (RA) provides the retinoid form of highest potency for a variety of cellular systems. RA has been implicated in many processes, such as growth and differentiation of epithelia in the adult organism (De Luca 1991), and determination of the antero-posterior axis for the limb bud (Eichele and Thaller 1987; Tickle et al. 1982) and the entire body of the vertebrate embryo (Durston et al. 1989; Hogan, Thaller, and Eichele 1992). In addition, RA is thought to promote neuronal survival, differentiation and neurite outgrowth (Haskell et al. 1987; Quinn and De Boni 1991; Wuarin, Sidell, and De Vellis 1990). RA exerts its effects by binding to specific nuclear receptors that regulate transcription. The diversity in RA actions is commonly attributed to differences in local expression patterns of different receptors and cytoplasmic binding proteins that modify the availability of intracellular RA (Giguére 1994). In addition, however, retinoid metabolism may contribute significantly to local diversity in RA actions. Retinoid metabolism includes the processes of precursor circulation and cellular uptake mediated by binding proteins, the reversible oxidation of retinol to retinaldehyde, the irreversible oxidation of retinaldehyde to RA, and RA degradation. Here we focus on the enzymes that mediate the oxidation of retinaldehyde to RA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akawi, Z.E., and J.L. Napoli. 1994. Rat liver cytosolic retinal dehydrogenase: Comparison of 13-cis, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity. Biochemistry 33: 1938–1943.

    Article  PubMed  Google Scholar 

  • Allenby, G., M. Bocquel, M. Saunders, S. Kazmer, J. Speck, M. Rosenberger, A. Lovey, P. TKastner, J.F. Grippo, P. Chambon, and A.A. Levin. 1993. Retinoic acid receptors and retinoid X receptors: Interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 90: 30–34.

    Article  CAS  PubMed  Google Scholar 

  • Asselineau, D., B. A. Bernard, C. Bailly, and M. Darmon. 1989. Retinoic acid improves epidermal morphogenesis. Dev. Biol. 133: 322–335.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, P. V., L. Poissant, and A. Lacroix. 1988. Properties of retinal-oxidizing enzyme activity in rat kidney. Biochim. Biophys. Acta 967: 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff, R., M. H. Green, T. Berg, and K. R. Norum. 1990. Transport and storage of vitamin A. Science 250: 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Conner, M. J., and M. H. Smit. 1987. Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo. Biochem. J. 244: 489–492.

    Google Scholar 

  • De Luca, L. M. 1991. Retinoids and their receptors in differentiation, embryogenesis and neoplasia. FASEB J. 5: 2924–2933.

    PubMed  Google Scholar 

  • Dev, S., A. J. Adler, and R. B. Edwards. 1993. Adult rabbit brain synthesizes retinoic acid. Brain Res. 632: 325–328.

    Article  CAS  PubMed  Google Scholar 

  • Dollé, P., V. Fraulob, P. Kastner, and P. Chambon. 1994. Developmental expression of murine retinoid X receptor (RXR) genes. Mech. Develop. 45: 91–104.

    Article  Google Scholar 

  • Dollé, P., E. Ruberte, P. Leroy, G. Morriss-Kay, and P. Chambon. 1990. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110: 1133–1151.

    PubMed  Google Scholar 

  • Duester, G., M. L. Shean, M. S. McBridge, and M. J. Steward. 1991. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Molec. Cell. Biol. 11: 1638–1646.

    CAS  PubMed  Google Scholar 

  • Durston, A. J., J. P. M. Timmermans, W. J. Hage, H. F. J. Hendriks, N. J. de Vries, M. Heideveld, and P. D. Nieuwkoop. 1989. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340: 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Eichele, G., and C. Thaller. 1987. Characterization of concentration gradients of morphogenetically active retinoid in the chick limb bud. J. Cell. Biol. 105: 1917–1923.

    Article  CAS  PubMed  Google Scholar 

  • Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, C. M. 1989. ‘Catatonia’ due to disulfiram toxicity. Arch. Neurol. 46: 798–804.

    Article  CAS  PubMed  Google Scholar 

  • Giguére, V. 1994. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr. Rev. 15: 61–79.

    PubMed  Google Scholar 

  • Haskell, B. E., R. W. Stach, K. Werrbach-Perez, and J. R. Perez-Polo. 1987. Effect of retinoic acid on nerve growth factor receptors. Cell Tiss. Res. 247: 67–73.

    Article  CAS  Google Scholar 

  • Hentze, M. W. 1994. Enzymes as RNA-binding proteins: a role for (di)nucleotide-binding domains? TIBS 19: 101–103.

    CAS  PubMed  Google Scholar 

  • Hogan, B. L., C. Thaller, and G. Eichele. 1992. Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 359: 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, M. W., and T. A. Reh. 1993. Retinoic acid influences the differentiation of photoreceptor cells in embryonic rat retina in vitro. Soc. Neurosci. Abstr. 19: 1288.

    Google Scholar 

  • Krauss, J. K., M. Mohadjer, A. K. Wakloo, and F. Mundinger. 1991. Dystonia and akinesia due to pallidopu-taminal lesions after disulfiram intoxication. Movement Disorders 6: 166–177.

    Article  CAS  PubMed  Google Scholar 

  • Laplane, D., N. Attal, B. Sauron, A. de Billy, and B. Dubois. 1992. Lesions of basal ganglia due to disulfiram neurotoxicity. J. Neurol. Neurosurg. Psychiatry 55: 925–929.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.-O., C. L. Manthey, and N. E. Sladek. 1991. Identification of mouse liver aldehyde dehydrogenases that catalyze the oxidation of retinaldehyde to retinoic acid. Biochem. Pharmacol. 42: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, R., and S. Evces. 1984. Rat liver aldehyde dehydrogenase. I. Isolation and characterization of four inducible isozymes. J. Biol. Chem. 259: 11991–11996.

    CAS  PubMed  Google Scholar 

  • Lufkin, T., D. Lohnes, M. Mark, A. Dietrich, P. Gorry, M.-P. Gaub, M. LeMeur, and P. Chambon. 1993. High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice. Proc. Natl. Acad. Sci. USA 90: 7225–7229.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, P. N., D. Bok, and D. E. Ong. 1990. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human. Proc. Natl. Acad. Sci. USA 87: 4265–4269.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf, D. J., U. Borgmeyer, R. A. Heyman, J. Y. Zhou, E. S. Ong, A. E. Oro, A. Kakizuka, and R. M. Evans. 1992. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6: 329–344.

    Article  CAS  PubMed  Google Scholar 

  • Marsh-Armstrong, N., P. McCaffery, W. Gilbert, J. E. Dowling, and U. C. Dräger. 1994. Retinoic acid is necessary for development of the ventral retina in zebrafish. Proc. Natl. Acad. Sci. USA 91:.

    Google Scholar 

  • McCaffery, P., and U. C. Dräger. 1993. Retinoic acid synthesis in the developing retina. In Enzymology and Molecular Biology of Carbonyl Metabolism. Vol IV. Edited by H. Weiner, D. W. Crabb and T. G. Flynn. 181–190. New York: Plenum Press.

    Chapter  Google Scholar 

  • McCaffery, P., and U. C. Dräger. 1994a. High levels of a retinoic-acid generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl. Acad. Sci. USA 91:.

    Google Scholar 

  • McCaffery, P., and U. C. Dräger. 1994b. Hotspots of retinoic acid synthesis in the developing spinal cord. Proc. Natl. Acad. Sci. USA 91:.

    Google Scholar 

  • McCaffery, P., M.-O. Lee, M. A. Wagner, N. E. Sladek, and U. C. Dräger. 1992. Asymmetrical retinoic acid synthesis in the dorso-ventral axis of the retina. Development 115: 371–382.

    CAS  PubMed  Google Scholar 

  • McCaffery, P., K. C. Posch, J. L. Napoli, L. Gudas, and U. C. Dräger. 1993. Changing patterns of the retinoic acid system in the developing retina. Dev. Biol. 158: 390–399.

    Article  CAS  Google Scholar 

  • McCaffery, P., P. Tempst, G. Lara, and U. C. Dräger. 1991. Aldehyde dehydrogenase is a positional marker in the retina. Development 112: 693–702.

    CAS  PubMed  Google Scholar 

  • Napoli, J. L. 1986. Retinol metabolism in LLC-PK1 cells. J. Biol. Chem. 261: 13592–13597.

    CAS  PubMed  Google Scholar 

  • Napoli, J. L., and K. R. Race. 1987. The biosynthesis of retinoic acid from retinol by rat tissues in vitro. Arch. Biochem. Biophys. 255: 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, S. D. P., and U. De Boni. 1991. Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell. Dev. Biol. 27A: 55–62.

    Article  Google Scholar 

  • Rabacchi, S. A., R. L. Neve, and U. C. Dräger. 1990. A positional marker for the dorsal retina is homologous to the 68kD-laminin receptor. Development 109: 521–531.

    CAS  PubMed  Google Scholar 

  • Rongnoparut, P., and S. Weaver. 1991. Isolation and characterization of a cytosolic aldehyde dehydrogenase-encoding cDNA from mouse liver. Gene 101: 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Ruberte, E., V. Friederich, P. Chambon, and G. Morriss-Kay. 1993. Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118: 267–282.

    CAS  PubMed  Google Scholar 

  • Tickle, C., B. Alberts, L. Wolpert, and J. Lee. 1982. Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296: 564–566.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, M., B. Han, and T. M. Jessell. 1992. Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116: 55–66.

    CAS  PubMed  Google Scholar 

  • Wistow, G., and H. Kim. 1991. Lens protein expression in mammals: Taxon-specificity and the recruitment of crystallins. J. Mol. Evol. 32: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Wuarin, L., N. Sidell, and J. De Vellis. 1990. Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int. J. Devl. Neurosci. 8: 317–326

    Article  CAS  Google Scholar 

  • Zgombic-Knight, M., M. A. Satre, and G. Duester. 1994. Differential activity of the promoter for the human alcohol dehydrogenase (retinol dehydrogenase) gene ADH3 in neural tube of transgenic mouse embryos. J. Biol. Chem. 269: 6790–6795.

    CAS  PubMed  Google Scholar 

  • Zhao, D., P. McCaffery, R. L. Ivins, R. L. Neve, P. Hogan, W. W. Chin, and U. C. Dräger. 1994. Molecular identification of a major retinoic-acid synthesizing enzyme: a retinaldehyde-specific dehydrogenase. Submitted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCaffery, P., Dräger, U.C. (1995). Retinoic Acid Synthesizing Enzymes in the Embryonic and Adult Vertebrate. In: Weiner, H., Holmes, R.S., Wermuth, B. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 5. Advances in Experimental Medicine and Biology, vol 372. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1965-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1965-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5808-4

  • Online ISBN: 978-1-4615-1965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics